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Watson

Exercise 1

(a) No. Since |θ| > 1, this process is not invertible:

Xt = (1− 2L)εt

Xt
1

1− 2L
= εt

We cannot turn 1
1−2L

into an infinite sum. Or, one con show that:

εt =Xt + θεt−1

=Xt + θ (Xt−1 + θεt−2)

...

=
t∑

j=0

θjXt−j + θtε0

If |θ| > 1, ε0 gets more important as t grows. Thus, εt cannot be recovered

from past values of Xt.

(b) (i) By observational equivalence, one could estimate:

Xt = ε̃t − θ̃ε̃t−1 where θ̃ = 1/2;Var (ε̃t) = 1

Then we also find

Xt
1

1− θ̃L
= ε̃t ⇒ ε̃T =

T−1∑
j=0

θ̃jXT−j

ET (XT+1) = −θ̃
T−1∑
j=0

θ̃jXT−j
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(ii) The first line directly follows from the result above. The jump to

the second line is legal because X1:T are known, therefore they have

no variance.

Var (XT+1) = Var

(
ε̃T+1 −

T−1∑
j=0

θ̃jXT−j

)
= Var (εT+1) = 1

Exercise 2

Did not cover this in lectures

Exercise 3

Correlated errors. Use the Kalman Filter derived in exercise session 2:

 wt

vt

 iid∼ N

 0

0

 ,
 R G

G′ Q

 yt = A′Xt +H ′ξt + wt

ξt = Fξt−1 + vt

Here: R = 1;Q = 2;G = 1;A′Xt = 0;F = 1;H = 1

ξt−1|t−1 = 3;Pt−1|t−1 = 0.5; yt = 2

# Variable Formula Value

1 ξt|t−1 Fξt−1|t−1 3

2 Yt|t−1 A′Xt +H ′ξt|t−1 3

3 Pt|t−1 FPt−1|t−1F
′ +Q 2.5

4 ht H ′Pt|t−1H +R +H ′G′ +GH 5.5

5 Kt

(
Pt|t−1H +G

)
· h−1

t 0.64

6 ηt Yt − Yt|t−1 -1

7 ξt|t ξt|t−1 +Ktηt 2.36

8 Pt|t Pt|t−1 −Kt

(
Pt|t−1H +G

)
1.08
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Therefore:

ξt|t = 2.36

Pt|t = 1.08

Exercise 4

(a) OLS:

√
T (β̂ − β) =

(
1

T

T∑
t=1

x2t

)−1(
1√
T

T∑
t=1

xtut

)

E (xtut) = E ((εt+1 + εt+2)ut) = 0

Unfortunately, (xtut} is not a martingale difference sequence:

E (xtut | Ωt−1) = E ((εt+1 + εt+2) (ϕut−1 + εt) | Ωt−1)

= E (ϕut−1εt+1 + ϕut−1εt+2 + εtεt+1 + εtεt+2 | Ωt−1)

What is Ωt−1 in this case? {uj}t=1
j=0 and {xj}t−1

j=0.

Then, we can find:

xt−1 = εt + εt+1

xt−2 = εt−1 + εt
...

x0 = ε1 + ε2

∣∣∣∣∣∣∣∣∣∣∣∣
⇒ recover εt+1 ± ε1

Using {uj}t−1
j=0 : ε1 = u1 − ϕu0

Since we are able to recover εt+1 ± ε1, and ε1, we can also recover all

{εj}t+1
j=1. Therefore, εt+1 ∈ Ωt−1 and εt ∈ Ωt−1. Thus, we conclude that
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E (xtut | Ωt−1) ̸= 0

Thus, we have that:

1√
T

T∑
t=1

xtut
d−→ N

(
0,

∞∑
j=−∞

λj

)

Now, we must find all λj:

λ0 = E
(
x2u2t

)
= E

(
x2t
)
E
(
u2t
)
= 2σ2 · σ2

(
1− ϕ2

)−1

λ1 = E (xtxt−1)E (utut−1) = σ2 · ϕσ2
(
1− ϕ2

)−1

λj = 0 ∀j > 2 since E (xtxt−j) = 0 ∀j > 2

We can then find the sum we were looking for:

∞∑
j=−∞

λj = 2σ2 · σ2
(
1− ϕ2

)−1
(1 + ϕ) =

2σ4

1− ϕ

Also:

(
1

T

∑
x2t

)−1
p−→ E

(
x2t
)−1

=
(
2σ2
)−1

Conclusion:

√
T (β̂ − β)

d−→ N

(
0,

1

2(1− ϕ)

)
(b) We know that

β̂
a∼ N

(
β,

1

T

1

2(1− ϕ)

)
Thus, we construct the following CI :

4



CI95 = β̂ ± 1.96

√√√√ 1

T

(
1∑

j=−1

λ̂j

)(
1

T

∑
x2t

)−2

= 0.08± 1.96

√
1

400
(2.43 + 6.15 + 2.43)(1.95)−2

= [−0.087; 0.247]

Since 0 ∈ CI95, we cannot reject the null hypothesis.

Exercise 5

∣∣∣∣∣∣ Yt = Yt−1 +Xt =
∑t

u=1Xu

Xk = Xk−1 + εk =
∑u

j=1 εj

∣∣∣∣∣∣⇒ Yt =
t∑

u=1

u∑
j=1

εj

T∑
t=1

Yt =
T∑
t=1

t∑
u=1

u∑
j=1

εj

T−5/2

T∑
t=1

Yt =
1

T

T∑
t=1

1

T

t∑
u=1

1√
T

u∑
j=1

εj

The blue block is analogue to what we saw in class. Let ξ(t/T ) =

T−1/2
∑t

i=1 εi(t/T ), and ξT (s) the function that linearly interpolates between

these points, then ξT (s)
d−→ W as σ2 = 1 in this case. W is a Wiener process.

As we are summing over n observations, we have

1

T

t∑
u=1

1√
T

u∑
j=1

εj d−→
∫ u

0

W (s)ds

And now, sum this over all t, then we get

T−5/2

T∑
t=1

Yt =
1

T

T∑
t=1

1

T

t∑
u=1

1√
T

u∑
j=1

εj
d−→
∫ 1

0

∫ u

0

W (s)dsdu
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Honoré

Exercise 1

(a) Solve the maximization problem:

max
m>0

E
(
−Y
m

)
− ln(m)

FOC: E(Y )
1

m2
− 1

m
= 0

⇒ m = E(Y ) = µ

(b) Solve the maximization problem:

max
b

n∑
i=1

yi
f (xi, b)

− ln (f (xi, b))

FOC:
n∑

i=1

−yif (xi, b)−2 f ′ (xi, b)− f (xi, b)
−1 f ′ (xib) = 0

n∑
i=1

(
yif (xi, b)

−1 + 1
)
f (xi, b)

−1 f ′ (xi,bb) = 0

No clue how to continue

Exercise 2

No clue. I don’t think we looked at ordered logit in lectures.

Exercise 3

P (D = 1) = α E (Y1 | D = 1) = 10 E (Y0 | D = 0) = 5

0 ≤ Y0 ≤ Y1 0 ≤ Y1 ≤ 15
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α10 + (1− α)0 ≤ E (Y1)

E (Y1) ≤ α10 + (1− α)15

∣∣∣∣∣∣ ⇒ 10α ≤ E (Y1) ≤ 15− 5α

(1− α)5 + α0 ≤ E (Y0)

E (Y0) ≤ (1− α)5 + α15

∣∣∣∣∣∣ ⇒ 5− 5α ≤ E (Y0) ≤ 5 + 10α

By these conditions, we conclude that:

E (Y1 − Y0) ∈ [15α− 5, 10− 15α]

Size of interval:

15α− 5− 10 + 15α = 30α− 15

Smallest if size is zero: α = 1/2

Exercise 4

(a) Instead of regressing the mean, one wants to find a quantile. Let’s say

one is interested in the median (50% quantile) effect that smoking has

on the risk of lung cancer. Then, one would run a quantile regression,

and would obtain the constant (risk of cancer for non-smokers), and β̂

(the median increase in risk for smokers).

(b) Say, one has data that does not fit the linear model very well. Instead of

going non-linear one could run multiple linear regressions on subsets of

the data.

Exercise 5

Difference the model:

∆εi2 = ∆yi2 −∆x′1i2β1 −∆x′2i2β2 i = 1, . . . , n

Use the information on E(ε | x).
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E (∆εi2 | x1is) = 0 for s = 1, 2

E (∆εi2 | x2is) = 0 for s = 1

Thus, we found 3 moment conditions. The model is over-identified if

dim (x1it) + dim (x2it) < 3. I.e. only if x1it & x2it are scalars.
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Exercise 1

Kalman Filter equations:

F = 0.9; H = R = Q = 1

Var (xt) =
1

1− 0.81
∼= 5.263

# Variable Formula Value

1 xt|t−1 (µ1) F · E (xt−1 | y1:t−1) 0

2 yt|t−1 (µ2) H · µ1 0

3 Pt|t−1 (Σ11) F 2 · V (xt) +Q 5.263

4 ht (Σ22) H2Pt|t−1 +R 6.263

5 Kt

(
Σ12Σ

−1
22

)
Pt|t−1 ·H · h−1

t 0.840

6 ηt (z2 − µ2) yt − yt|t−1 1

7 xt|t (E (z1|z2)) xt|t−1 +Ktηt 0.840

8 Pt|t (V (z1|z2)) Pt|t−1 −KtHPt|t−1 0.841

(a) Since everything is normally distributed, we find:

f (yt | xt−1 = 0, yt−1 = 2) =
1√
2πht

exp

[
−1

2

η2t
ht

]
∼=

1√
2π6.263

exp

[
−1

2

y2t
6.263

]
Remember, we don’t know yt in (a).

(b) Also a normal distribution. Thus:
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f (xt | yt = 1, xt−1 = 0, yt−1 = 2) =
1√
2πPt|t

exp

[
−1

2

(
xt − xt|t

)2
Pt|t

]

∼=
1√

2π0.841
exp

[
−1

2

(xt − 0.84)2

0.841

]

Exercise 2

Could not solve this, here’s what I did:

yt |xt−1 = xt|xt−1 + vt

P (xt = 1 | xt−1 = 0) = 0.2

P (xt = 0 | xt−1 = 0) = 0.8

⇒f (xt | xt−1 = 0) = 0.2xt · 0.81−xt

f (yt | y1:t−1) =f (yt | xt = 1)P (xt = 1 | y1:t−1)

+ f (yt | xt = 0)P (xt = 0 | y1:t−1)

=f (1 + vt) · 0.2 + f (vt) · 0.8

=
0.2√
2π

exp

[
−1

2
(yt − 1)2

]
+

0.8√
2π

exp

[
−1

2
y2t

]

Exercise 3

(a)

Var (xt) = 1 + 4 = 5 from εt
iid∼ N(0, 1)

Var (xt) =
(
1 + θ2

)
σ2
η from MA(1)

Combine the two:

5 =
(
1 + θ2

)
σ2
η (1)
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Also get auto-covariance:

Cov (xt, xt+1) = Cov (εt + 2εt−1, εt+1 + 2εt)

= 2Cov (εt, εt) = 2

Cov (xt, xt+1) = Cov (ηt + θηt−1, ηt+1 + θηt)

= θCov (ηt, ηt) = θσ2
η

Combine the two:

2 = θσ2
η (2)

Plug (2) into (1):

5 =
(
1 + θ2

) 2
θ

⇔ 0 = 2θ2 − 5θ + 2

⇔ 0 = θ2 − 2.5θ + 1

⇔ θ1/2 =
2.5±

√
2.25

2
=

2.5± 1.5

2
= {1/2; 2}

θ1 =
1

2
By invertibility

σ2
η = 4 By (2)

(b)

ηt + θηt−1 = (1 + θL)ηt = εt + 2εt−1 = (1 + 2L)εt

ηt =
1 + 2L

1 + θL
εt = (1 + 2L)

(
1− θL+ θ2L2 − θ3L3 + . . .

)
εt

=
(
1 + 2L− θL− 2θL2 + θ2L2 + 2θ2L3 − θ3L3 − 2θ3L4 + . . .

)
εt

=
(
1 + (2− θ)L+

(
−2θ + θ2

)
L2 +

(
2θ2 − θ3

)
L3 + . . .

)
εt

=
(
1 + (2− θ)L+ (2− θ)(−θ)L2 + (2− θ)(−θ)2L3 + . . .

)
εt

ηt = εt + (2− θ)
t∑

i=0

(−θ)iεt−1−i
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Exercise 4

Did not cover this in lectures.

Exercise 5

(a) asdf

(i)
√
T (α̂− α) =

(
1

T

∑
x2t−1

)−1(
1√
T

∑
xt−1εt

)
(
1

T

∑
x2t−1

)−1
p−→ E

(
x2t−1

)−1
=

1− ϕ2

2(
1√
T

∑
xt−1εt

)
d−→ N

(
0,E

(
x2t−1ε

2
t

))
Use the fact that xt ⊥ εt∀t(

1√
T

∑
xt−1εt

)
d−→N

(
0,E

(
x2t−1

)
E
(
ε2t
))

Combine the two: (Slutsky)

√
T (α̂− α)

d−→ N

(
0,

1− ϕ2

2

)
(ii)

√
T (ϕ̂− ϕ) =

(
1

T

∑
x2t−1

)−1(
1√
T

∑
xt−1vt

)
(
1

T

∑
x2t−1

)−1
p−→ E

(
x2t−1

)−1
=

1− ϕ2

2(
1√
T

∑
xt−1vt

)
d−→ N

(
0,E

(
x2t−1v

2
t

))
Use the fact that xt ⊥ vt∀t(

1√
T

∑
xt−1vt

)
d−→N

(
0,E

(
x2t−1

)
E
(
v2t
))

Combine the two: (Slutsky)
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√
T (ϕ̂− ϕ)

d−→ N

(
0,

1− ϕ2

2

)
(iii) Write in matrix notation: yt

xt

 =

 xt−1 0

0 xt−1


︸ ︷︷ ︸

X

 α

ϕ

+

 εt

vt


︸ ︷︷ ︸

ηt

Apply GMM:

√
T

 α̂− α

ϕ̂− ϕ

 α−→ N(0,Ω)

And Ω = E (XX ′)−1 E
(
(η′X)′ (ηX)′

)
E (XX ′)−1

E(XX ′)−1 =

 E
(
x2t−1

)−1
0

0 E
(
x2t−1

)−1

 =
1− ϕ2

2

 1 0

0 1


η′X =

 εt

vt

′  xt−1 0

0 xt−1

 =
[
εtxt−1 vtxt−1

]

E
(
(η′X)

′
(ηX)′

)
=

 E
(
ε2tx

2
t−1

)
E
(
εtvtx

2
t−1

)
E
(
εtvtx

2
t−1

)
E
(
v2t x

2
t−1

)


=

 E (ε2t )E
(
x2t−1

)
E (εt)E (vt)E

(
x2t−1

)
E (εt)E (vt)E

(
x2t−1

)
E (v2t )E

(
x2t−1

)


=

 1 0

0 2

 · 2

1− ϕ2

Ω =
1− ϕ2

2

 1 1

1 2



13



(b)

CI =

 ˆ̂α± 1.96
1√
T

√
1− ϕ̂2

2

 = [1.203; 1.396]
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Honoré

Exercise 1

(a) The issue is that the asymptotics for OLS only hold for n→ ∞, with a

fixed number of parameters. But as n→ ∞, the number of the αi also

goes to infinity.

Then, we cannot say anything about the distributions of (β, γ, δ).

(b) We should use first differences ( αi drop out):

∆yit = ∆x′itβ +∆x′it−1γ +∆x′it−2δ +∆εit

We need to start at T = 4, otherwise the explanatory variables are not

well defined. Also note, that by assumption:

E (∆εit | xit, xit−1, xit−2, . . .) = 0

Thus, the errors are uncorrelated, and OLS should recover the coefficients.

Not super sure if GMM would be better with moment conditions:

E (∆εitxit) = E
((
∆yit −∆x′itβ −∆x′it−1γ −∆x′it−2δ

)
xit
)
= 0

Exercise 2

(a)
√
n(β̂ − β)

d−→ N
(
0, A−1BA−1

)
A = E

(
x2i exp (xiβ)

2) = E
(
x2i exp (2xiβ)

)
B = E

(
ε2ix

2
i exp (2xiβ)

)
= E

(
E
(
ε2i | xi

)
x2i exp (2βxi)

)
= E

(
x2i exp (3βxi)

)
√
n(β̂ − β)

d−→ N

(
0,

E (x2i exp (3βxi))

[E (x2i exp (2xiβ))]
2

)
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(b)
√
n(β̂ − β)

d−→ N
(
0,Γ−1SΓ−1

)
Γ = E (−xi exp (xiβ))

S = V (f (xi, β)) = V (yi − exp (xiβ)) = V (εi) = E (exp (xiβ))

√
n(β̂ − β)

d−→ N

(
0,

E (exp (xiβ))

[E (xi exp (xiβ))]
2

)
(c)

√
n(β̂ − β)

d−→ N
(
0,
(
G′S−1G

)−1
)

G = E

 −xi exp (xiβ)

−x2i exp (xiβ + 2)



S−1 = V


εiyi − exp (xiβ) exp(2)︸ ︷︷ ︸

WTF?

xi




Exercise 3

Approximately: (Nonparametrics, slide 11)

Bias(f̂(x)) ∼=
1

2
h2f ′′(x)

∫
v2K(v)dv

=
1

2
h2f ′′(x)

∫
v2

1

2
dv

=
1

2
h2

1

4
exp

(
−x
2

)(x2
2

− 1

)
1

2

[
1

3
v3
]1
−1

=
1

2
h2

1

4
exp

(
−x
2

)(x2
2

− 1

)
1

3

Bias(f̂(1)) ∼=
1

n1/4
exp

(
−1

2

)(
− 1

16

)
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V (f̂(x)) ∼=
1

nh
f(x)

∫
K(v)2dv

=
1

3n3/4

1

2
exp

(
−x
2

)∫ 1

−1

1

4
dv

=
1

3n3/4

1

2
exp

(
−x
2

) 1

2

V (f̂(1)) =
1

12

1

n3/4
exp

(
−1

2

)
MSE(f̂(1)) =

[
1

n1/4
exp

(
−1

2

)(
− 1

16

)]2
+

1

12

1

n3/4
exp

(
−1

2

)
= n−1/2 exp(−1)2−8 + n−3/4 1

12
exp

(
−1

2

)
= const1 n

−1/2 + const2 n
−3/4

Exercise 4

(a) It is given by ϕ (x′0β) βl, where ϕ(·) is the pdf of a standard normal, and

βl the coefficient on the explanatory variable.

(b) We can estimate the marginal effect by:

g(β̂) = ϕ
(
x′0β̂
)
β̂l

Also recall from the lecture that

√
n(β̂ − β)

d−→ N(0,Σ)

Now, we can apply the delta-method as g(·) is a non-linear function of β.

√
n(g(β̂)− g(β))

d−→ N

(
0,

(
∂g(β)

∂β

)′

Σ
∂g(β)

∂β

)
(c) Very long answer...
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Exercise 1

(a)

Et (Yt+1 | εt + εt−1 = 2) = Et (εt+1 + 0.8εt | εt = 2− εt−1)

= Et (εt+1 + 0.8 (2− εt−1))

= Et (εt+1) + 1.6− 0.8Et (εt−1)

= 1.6

The optimal forecast is the conditional expectation of Yt+1 given the

information that εt + εt−1 = 2.

(b)

ϕ̂ =
Ĉov (Yt, Yt−1)

V̂ar (Yt−1)

p−→ Cov (Yt, Yt−1)

Var (Yt−1)
=

Cov (εt + 0.8εt−1, εt−1 + 0.8εt−2)

Var (εt−1 + 0.8εt−2)

=
Var (εt−1) · 0.8

Var (εt−1) + 0.64Var (εt−2)

=
0.8

1.64
= 0.488

Exercise 2

(a) It is not invertible. Let Xt = Yt − β, then

Xt = εt − θεt−1

⇔ εt = Xt + θεt−1

= Xt + θ (Xt−1 + θεt−2)

...

= θtε0 +
t−1∑
i=0

θiXt−i

18



If |θ| ≥ 1, then θtε0 does not converge towards zero as t gets large.

Therefore, Xt cannot be expressed only by its lagged values plus the

period t error.

(b)
√
T (Ȳ − β) =

√
T
1

T

T∑
t=1

(Yt − β) =
1√
T

T∑
t=1

(εt − θεt−1)

=
1√
T

(
T∑
t=1

εt − θ

T−1∑
t=0

εt

)

=
1√
T

(
T∑
t=1

εt − θ
T∑
t=1

εt − θε0 + θεT

)

= (1− θ)
1√
T

T∑
t=1

εt︸ ︷︷ ︸
d−→N(0,σ2(1−θ)2)

+
θ√
T
(εT − ε0)︸ ︷︷ ︸

p−→0

Apply Slutsky:

√
T (Ȳ − β)

d−→ N
(
0, σ2(1− θ)2

)
√
T (Ȳ − β)

d−→ N(0, 1)

(c) Delta method: g(x) = x2; (g′(x))2 = 4x2

√
T
(
Ȳ 2 − β2

) d−→ N
(
0, 1 · g′(β)2

)
Use g′(β)2 = 4β2 and β = 5. Then:

√
T
(
Ȳ 2 − 25

) d−→ N (0, 100)

(d) If θ = 1, this would lead to V = 0 which is clearly incorrect. There, I

would do the following:

19



Yt − β = ut = εt − εt−1

1√
T

∑
Yt − β =

1√
T

T∑
t=1

ut

Now ut ∼ N(0, 2) but not iid anymore.

How further??

Exercise 3

(a)

X̄t =
1

n

n∑
i=1

ξt + εit = ξt +
1

n

n∑
i=1

εit

ξt
p−→ ξt as ξt = ξt

1

n

n∑
i=1

εt
p−→ E (εit) = 0 by LLN

I conclude that

X̄t −→ ξt

(b)

MSE = E
((
X̄t − ξt

)2)
= E

( 1

n

n∑
i=1

εit

)2
 =

(
1

n

)2

E

(
n∑

i=1

ε2it +
∑
j ̸=i

εitεjt

)

=
1

n2

n∑
i=1

E
(
ε2it
)︸ ︷︷ ︸

σ2=1

+
∑
j ̸=i

E (εitεjt)︸ ︷︷ ︸
=0 by iid N(0,1)

=
1

n

(c) Maybe MLE-estimator?
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Honoré

Exercise 1

(a) CI = [β̂ ± 1.96 · ŜE(β̂)] ∼= [0.227; 0.962]

(b) Reject the hypothesis:

t =
β̂ − β0

ŜE(β̂)
=

0.092 + 0.2

0.115
= 2.545 > 1.96

(c)

x′iβ = 1.1 · 0.98 + 0.8 · 0.152 + 1 · (−0.223)− 1.872

= −0.896

P (yi = 1|xi) =
exp (x′iβ)

1 + exp (x′iβ)
∼= 28.993%

(d)
∂P (yi = 1 | xi)

∂bloodp
= P (yi = 1 | xi)P (yi = 0 | xi) · βbloodp

∼= 0.202

Exercise 2

(1)
√
n(β̂ − β)

d−→ N
(
0, A−1BA−1

)
A = E

(
(1 + 2βxi)

2)
B = σ2E

(
(1 + 2βxi)

2)
Thus, we can simplify:

√
n(β̂ − β)

d−→ N
(
0, σ2E

(
(1 + 2βxi)

2)−1
)

21



(2)
√
n(β̂ − β)

d−→ N
(
0, G−1SG−1

)
G = E (−xi (1 + 2βxi)) = −

(
E (xi) + 2βE

(
x2i
))

S = V
((
yi −

(
β + β2xi

))
xi
)
= V (εixi)

= E
(
ε2ix

2
i

)
− E (εixi)

2 = E
(
E
(
ε2i | xi

)
x2i
)

= σ2E
(
x2i
)

(3)
√
n(β̂ − β)

d−→ N
(
0,
(
G′S−1G

)−1
)

G = E

 − (1 + 2βxi)

−xi (1 + 2βxi)


S = V

 εi

εixi

 = E

 ε2i ε2ixi

ε2ixi ε2ix
2
i

 = σ2

 1 E (xi)

E (xi) E (x2i )


Exercise 3

• When we think that the treatment is that some variable x is greater then

some threshold c. Examples would be:

– let x be time, c be the year 1989, and y is GDP growth in eastern

Germany. Since before c, eastern Germany was under communist

rule, one could interpret 1989 as the threshold after which the

treatment ”capitalism” was implemented.

– let x be school grades, c be the cutoff to get into med-school, and y

be earnings. We can use this cut-off as a treatment.

• It assumes, that the regressions in the counterfactual would continue

continuously. Also, that the treatment at c actually causes a jump in y.

The following graph helps to drive the idea home:
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Exercise 4

First, we get rid of the αi by taking first differences:

∆yit = ∆xitβ1 +∆x2itβ2 +∆εit t = 2, 3

Note, that we can use the following to find the moment conditions:

E (∆εit | x1is) = 0 ∀t, s

E (∆εit | x2is) = 0 ∀t ≥ s

for x1it : E (∆εitx1is) = 0 ∀s, t

E (∆yit −∆x1itβ1 +∆x2itβ2)x1is = 0 ∀s, t

−→ 6 moment conditions

for x2it : E (∆εitx2is) = 0 ∀(s, t) ∈ {(1, 2), (1, 3), (2, 3)}

E ((∆yit −∆x1itβ1 +∆x2itβ2)x2is) = 0 ∀(s, t) ∈ {(1, 2), (1, 3), (2, 3)}

−→ 3 moment conditions

Therefore, we can use 9 moment conditions in total, and GMM will work

to estimate (β1, β2).
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Exercise 1

√
T (µ̂− µ) =

1√
T

T∑
t=1

ut

µ̂ is the OLS estimator of the mean (regressing on a vector of ones).

(a) Necessary for enumerate to work

(i) ut is not an mds. Thus, we must use the ACGF:

1√
T

T∑
t=0

ut
d−→ N

(
0,

∞∑
j=−∞

λj

)

MA(∞) representation:

ut = (1− ϕL)−1εt ⇒
∞∑

j=−∞

λj =
σ2

(1− ϕ)2

Putting everything together:

√
T (Ȳ − µ)

d−→ N

(
0,

σ2

(1− ϕ)2

)
(ii) Since we don’t have σ̂2 and ϕ̂, we will use V =

∑∞
i=−∞ λi, and∑2

i=−2 λi is a consistent estimator for V . As Y is a scalar: λi = λ−i

CI =

µ̂± 1.96

√√√√ 1

T

2∑
i=−2

λ̂i

 = [11.493, 12.707]

(b) Necessary for enumerate to work

(i) Again, ut is not a mds. Use ACGF:
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ut = (1 + θL)εt ⇒
∞∑

j=−∞

λj = σ2(1 + θ)2

√
T (Ȳ − µ)

d−→ N
(
0, σ2(1 + θ)2

)
(ii)

λ0 = Var (Yt) = Var (ut) = σ2 + θ2σ2

λ1 = Cov (Yt, Yt+1) = Cov (ut, ut+1) = θσ2

Cov (Yt, Yt+k) = 0 ∀k > 1

CI =

[
µ̂± 1.96

1√
T

(
λ̂0 + 2λ̂1

)1/2]
= [11.560; 12.640]

Exercise 2

(a) First. I will rewrite the model as

Ȳt = ξt +
1

3
(ε1t + ε2t + ε3t)︸ ︷︷ ︸

≡ut

= ξt + ut

ξt = Fξt−1 + et ; F = 0.62 ut

et

 iid∼ N

0,

 R 0

0 Q

 ∣∣∣∣∣∣ R = 1/3

Q = 1

From here, we can apply the Kalman Filter. The eight equations are

given by (ignore the blue text):

(1) ξt|t−1 = Fξt−1|t−1 = 0.8 · 0 = 0

(2) Ȳt|t−1 = ξt|t−1 = 0

(3) Pt|t−1 = F 2Pt−1|t−1 +Q = 2.778

(4) ht = Pt|t−1 +R = 3.111

(5) Kt = Pt|t−1h
−1
t = 0.893

(6) ηt = Ȳt − Ȳt|t−1 = 2

(7) ξt|t = ξt|t−1 +Ktηt = 1.786
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(8) Pt|t = Pt|t−1 −KtPt|t−1

We need one more thing to start the recursion, which is the initial values.

As it is AR(1) & stationary, use

ξ0|0 = E (ξ0) = 0

P0|0 = Var (ξ0) =
Var (et)

1− F 2
=

1

0.36
∼= 2.778

Now, we can go through the equations and plug in numerical values (in

blue) to find ξ̂t|t = 1.786

(b) Use the eight equations to iterate through t periods until we find ξt|t as

the best guess for ξt.

Exercise 3

(a) I don’t think so. My explanation would be that we have 2 innovations

for only 1 variable. Thus, we cannot recover ε1t ad ε2t from past values

of Yt. Therefore, not invertible.

(b)

Yt =ε1t +

θ11ε1t−1 + θ21ε1t−2 + θ31

[
Yt−3 −

∞∑
h=1

θh1ε1,t−h−3 −
∞∑
h=0

θh,2ε2,t−h−3,3

]

+θ41ε1t−4 + . . .) +
∞∑
h=0

θh,2ε2t−h

=θ31

[
Yt−3 −

∞∑
h=1

θh1ε1,t−h−3 −
∞∑
h=0

θh,2ε2,t−h−3,3

]

+ ε1t +
∞∑
h=1

θ1,hεt−h +
∞∑
h=0

θh,2ε2,t−h − θ31ε1t−3

We see that the ”error” is serially correlated. The OLS regressor is

inconsistent.
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Cannot really prove why though. Maybe be cause we don’t know is

|θj| < 1, which would make it stationary.

(c)

ε1t =
1

12
(Zt − et) =

1

12
Zt − ẽt

WTF?
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Honoré

Exercise 1

(1) CI = [β̂ ± 1.96 · ŜE(β̂)] = [−0.132; 0.765]

(2)

x′β = 3.134

P (y = 1 | x) = exp (x′β)

1 + exp (x′β)
∼= 0.93209 = 93.209%

We see that the estimated probability is higher than the average at ca.

90%. This is the case because ...?

(3) Logit-model:

∂P (yi = 1 | xi)
∂xil

=
exp (x′iβ)

(1 + exp (x′iβ))
2βl

∼= −0.035

Linear model:

∂P (yi = 1 | xi)
∂xil

= βl ∼= −0.046

Probiy model:

∂P (yi = 1 | xi)
∂xil

∼= −0.037

We see that (in absolute terms), the linear model gives age the highest

marginal effect, followed by the probit model. The logit gives age the

lowest marginal effect.

Exercise 2

(1) Let f (xi, β) = exp (β1 + xiβ2)
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⇒ ∇f (xi, β) =

 exp (β1 + xiβ2)

exp (β1 + xiβ2)xi

 =

 f (xi, β)

f (xi, β)xi


⇒ ∇f(·) · (∇f(·))′ =

 f (xi, β)
2 f (xi, β)

2 xi

f (xi, β)
2 xi f (xi, β)

2 xi
2


=

 1 xi

xi x2i

 f (xi, β)2
From lecture & by heteroskedasticity:

√
n(β̂ − β)

d−→ N

0, σ2E


 1 xi

xi x2i

 f (xi, β)2


−1
(2) Assume efficient MoM, then we have

√
n(β̂ − β)

d−→ N

(
0,E

(
∂f (xi, β)

∂β

)−1

SE
(
∂f (xi, β)

∂β

)−1
)

f (xi, β) =

 yi − exp (β1 + xiβ2)

yi − exp (β1 + xiβ2)xi

 ≡

 f1(·)

f2(·)


∂f (xi, β)

∂β
=

 ∂f1(·)/∂β1 ∂f1(·)/∂β2
∂f2(·)/∂β1 ∂f2(·)/∂β2


=

 − exp (β1 + xiβ2) − exp (β1 + xiβ2)xi

− exp (β1 + xiβ2)xi − exp (β1 + xiβ2)x
2
i


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E
[
∂f (xi, β)

∂β

]−1

= E

 − exp (β1 + xiβ2) − exp (β1 + xiβ2)xi

− exp (β1 + xiβ2)xi − exp (β1 + xiβ2)x
2
i


S = V

[
f (xi, β)

]
= V

 yi − exp (β1 + xiβ2)

yi − exp (β1 + xiβ2)xi


= V

 εi

εixi

 = E

 ε2i xiε
2
i

xiε
2
i x2i ε

2
i

 = σ2E

 1 xi

xi x2i


Exercise 3

(1) Synthetic controls are used to see if a treatment had an effect on some

aggregate outcome (e.g. on city level). Since no two cities (or places) are

identical, one might struggle to find a perfect control. Therefore, one

might construct a synthetic (i.e. artificial) control by averaging other

cities’ characteristics (using weights if desired).

(2) This is the average treatment effect for the complying subjects in a

randomized experiment. One can estimate it using 2SLS where the

treatment group is the instrument, and the treatment is the variable of

interest. It is used if one is concerned with heterogenous & unobservable

treatment effects as well as if there is a reason to believe that there may

be noncompliers.

Exercise 4

(1) We assume that there are matches across treatment groups: 0 < Pr(D =

1 | X) < 1. Also, we must assume that conditional on X (which is age

here), the treatment outcomes (Y1, Y0) are independent of D (which is

assignment of treatment group).

(2)

ATET = 3.5
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Treated Untreated Differences

Age Y Age Y ∆Y

25 100 25 80 20

30 50 30 60 -10

35 40 35 40 0

40 40 40 32.5 7.5

45 25 45 25 0
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Exercise 1

(a)

εt =
1− ϕL

1− θL
yt

= (1− ϕL)
(
1 + θL+ (θL)2 + (θL)3 + . . .

)
yt

=
(
1− ϕL+ θL− ϕθL2 + (θL)2 − ϕθ2L3 + (θL)3 − ϕθ3L4 + . . .

)
yt

=
(
1 + (θ − ϕ)L+ θ(θ − ϕ)L2 + θ2(θ − ϕ)L3 + . . .

)
yt

= yt + (θ − ϕ)
[
yt−1 + θyt−2 + θ2yt−3 + . . .

]
Thus, if we know ϕ and θ and all yt−i∀i ⩾ 0, were able to reconstruct εt.

(b)

εt ∼ N(0, 1)

yt |εt = ϕyt−1 + εt| εt ∼ N

(
εt,

ϕ2

1− ϕ2

)

⇒

 yt

εt

 ∼ N

 0

0

 ,
 1

1−ϕ2 1

1 1


E (εt | yt = 2) = 0 + 2

(
1− ϕ2

)
= 2(1− 0.64) = 0.72
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Exercise 2

(a)

gt = (ρxt−1 + et) (ϕut−1 + εt)

= ρϕ (xt−1ut−1) + ϕut−1et + ρxt−1εt + etεt

= γgt−1 + at

where γ = ρϕ; at = ϕut−1et + ρxt−1εt + etεt

Now, also at−1 = ϕut−2et−1 + ρxt−2εt−1 + et−1εt−1

Note, that E (atat−1) = 0, as either et or εt will enter every part of the

sum, and both are independent of the rest. This also holds for E (atat−j),

where j ⩾ 1. Therefore, at is serially uncorrelated.

(b) • {yt, xt} is ergodic & stationary by |ρ| < 1 & |ϕ| < 1

• E (gt) = 0 since E (xt) = E (ut) = 0

• {gt} is not mds

(1) Construct estimator

β̂OLS =

(
1

T

∑
x2t

)−1(
1

T

∑
xtyt

)
=

(
1

T

∑
x2t

)−1(
1

T

∑
βx2t + gt

)
= β +

(
1

T

∑
x2t

)−1(
1

T

∑
gt

)
(2) Show convergences

(
1

T

∑
x2t

)−1
p−→ E

(
x2t
)−1

= 1− ρ2 by LLN & CMT

1√
T

∑
gt

d−→ N(0,Ω) by CLT

(3) Combine (1) $ (2):

√
T (β̂ − β)

d−→ N
(
0,E

(
x2t
)−1

ΩE
(
x2t
)−1
)
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(4) Find Ω :

First, the MA(∞) representation of gt is

gt = (1− γL)−1at

Therefore, the ACGF gives us

Ω =
∞∑

j=−∞

λj =

(
1

1− γ

)2

Var (at)

Now, we find Var (at):

Var (at) = E
[
(ϕut−1et + ρxt−1εt + etεt)

2]
= E

[
ϕ2u2t−1e

2
t + ρ2x2t−1ε

2
t + e2t ε

2
t

]
by et ⊥ εt

= ϕ2E
[
u2t−1

]
+ ρ2E

[
x2t−1

]
+ 1

=
ϕ2

1− ϕ2
+

ρ2

1− ρ2
+ 1

(5) Express V :

V = ΩE
(
x2t
)−2

=

(
1

1− γ

)2 [
ϕ2

1− ϕ2
+

ρ2

1− ρ2
+ 1

] (
1− ρ2

)2
=
ϕ2 (1− ρ2) + ρ2 (1− ϕ2) + (1− ρ2) (1− ϕ2)

(1− ϕ2) (1− ρ2) (1− γ)2
(
1− ρ2

)2
=

1− ρ2ϕ2

(1− ϕ2) (1− γ)2
(
1− ρ2

)
=

(1− γ)(1 + γ)

(1− ϕ2) (1− γ)2
(
1− ρ2

)
=

1 + γ

1− γ

1− ρ2

1− ϕ2

33



Exercise 3

(a)

min
b

T∑
t=1

(yt − xtb)
2 + λb2

min
b

T∑
t=1

y2t − b · 2
T∑
t=1

ytxt + b2
T∑
t=1

x2t + b2λ

FOC : −2
⊤∑
t=1

ytxt + 2b
T∑
t=1

x2t + 2bλ = 0

⇔ b =

(
λ+

T∑
t=1

x2t

)−1( T∑
t=1

ytxt

)
≡ β̃

(b)

E
(
β̃ | {xt}Tt=1

)
= E

(λ+
T∑
t=1

x2t

)−1( T∑
t=1

xt (xtβ + εt)

)
| {xt}Tt=1


= E

(λ+
T∑
t=1

x2t

)−1( T∑
t=1

x2tβ + xtεt

)
| {xt}Tt=1


=

(
λ+

T∑
t=1

x2t

)−1( T∑
t=1

x2tβ

)
̸= β if λ ̸= 0

Yes, the estimator is biased. λ ”punishes” large values (in absolute terms)

of β̃.
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(c)

V
(
β̃ | {xt}Tt=1

)
= E

((
β̃ − E

(
β̃ | {xt}Tt=1

))2
| {xt}Tt=1

)

= E

(λ+
T∑
t=1

x2t

)−1( T∑
t=1

xtεt

)2

| {xt}Tt=1


=

(
λ+

T∑
t=1

x2t

)−2

E

( T∑
t=1

xtεt

)2

| {xt}Tt=1


=

(
λ+

T∑
t=1

x2t

)−2( T∑
t=1

x2t

)

For the OLS, we would have VOLS =
(∑T

t=1 x
2
t

)−1

. Thus, the ridge

estimator has a lower variance!

Exercise 4

(a)

∂∆yt+h

∂εt
=



1 if h = 0

0.4 if h = 1

0.2 if h = 2

0 else

(b) Take this with a grain of salt, I am not sure if I did this correctly.
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yt = yt−1 + εt + θ1εt−1 + θ2εt−2

= yt−2 + εt−1 + θ1εt−2 + θ2εt−3 + εt + θ1εt−1 + θ2εt−2

= yt−3 + εt−2 + θ1εt−3 + θ2εt−4 + εt−1 + θ1εt−2 + θ2εt−3 + εt + θ1εt−1 + θ2εt−2

= . . .

= y0 +
t−1∑
i=0

εt−i + θ1

t−1∑
i=0

εt−1−i + θ2

t−2∑
i=0

εt−2−i

∂yt+h

∂εt
=

∂yt
∂εt−h

=


1 if h = 0

1 + θ1 it h = 1

1 + θ1 + θ2 if h > 1
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Honoré

Exercise 1

(a) see table

treated untreated ATET

age outcome age outcome Diff P (X | D = 1)

25 80 25 100 -20 1/8

30 60 30 50 10 2/8

35 40 35 40 0 2/8

40 35 40 40 -5 2/8

45 25 45 25 0 1/8

ATET =
1

8
(−20 + 2 · 10− 2 · 5) = −10/8 = −1.25

(b) That the outcome given age is independent of the treatment. I.e. there

is no self-selection. Also, Pr(D | age ) ∈ (0, 1), i.e. for all ages I can find

observations in either group.

Exercise 2

(a) No. This is the reference category & its effect is included in the intercept.

Including it would introduce perfect multicollinearity, breaking the model.

(b) CI = [β̂ ± 1.96 · ŜE(β̂)] = [0.118; 0.309]

(c) Linear model:
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P (Yi = 1 | xi) = x′iβ

= 40 · 0.0402242 age

+ 402 · (−0.0005327) age2

+ 1 · 0.0260638 white

+ 1 · 0.3038465 college

+ (−0.1445535) intercept

∼= 94.200%

Logit model:

P (yi = 1 | xi) =
exp (x′iβ)

1 + exp (xiβ)

x′iβ = 40 · 0.2134573 age

+ 402 · (−0.002834) age2

+ 1 · 0.1350566 white

+ 1 · 1.499036 college

+ (−3.335203) intercept

P (yi = 1 | xi) ∼= 90.911%

Probit model:

x′iβ = 40 · 0.1267975 age

+ 402 · (−0.0016807) age2

+ 1 · 0.0979536 white

+ 1 · 0.9029787 college

+ (−2.010371) intercept

P (yi = 1 | xi) = Φ (xiβ) ∼= Φ(1.373)

(d) Since the logic uses a non-liner function, one should use the delta method

to find the estimators’ distribution. Alternatively, one could obtain the CI
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on the coefficients x′iβ and then apply g (x′iβ) = exp (x′i) / (1 + exp (x′iβ))

to the bounds, since g(·) is strictly monotone & its output is one-

dimensional.

Exercise 3

The regression discontinuity makes sense, if a treatment is considered as x

being greater than some cutoff c. The idea is that the relationship between

x & y is different when x ⩽ c, than when x > c. One assumes that the two

regressions continue smoothly in the counterfactual areas. The following graph

helps to show the idea:

Example: Let x be time, c is 1989, and y the GDP growth in eastern

Germany. Since the Berlin wall fell in 1989, it makes sense to model this as a

regression discontinuity (ignoring the time series properties for the moment).

Exercise 4

(a)

f (xi, b) = yi − exp (xib)

f ′ (xi, b) = −xi · exp (xib)
√
n(b− β)

d−→ N
(
0,E (−xi exp (xiβ))−2 E (exp (2xiβ))

)
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(b)

∂f (xib)

∂b
=

 − exp (xib)xi

− exp (xib)x
2
i


√
n(b− β)

d−→ N(0,Σ)

Σ = A−1B′I2SI2BA
−1

A = E
(
∂f(xib)

∂b

)′

I2E
(
∂f(xib)

∂b

)
= E (exp (xib)xi)

2 + E
(
exp (xib)x

2
i

)2
B = E

(
∂f (xib)

∂b

)
= E

 − exp (xib)xi

− exp (xib)x
2
i


S = Var (f (xi, β)) = Var

 εi

εixi

 = E

 ε2i xiε
2
i

xiε
2
i x2i ε

2
i


= E

E
 ε2i xiε

2
i

xiε
2
i x2i ε

2
i

∣∣∣∣∣∣ xi


= E

 exp(2xiβ) exp(2xiβ)xi

exp(2xiβ)xi exp(2xiβ)x
2
i


Done?
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Exercise 1

(a)

xt = yt + yt−2

(1)

E (xt) = E (yt) + E (yt−2) = µy + µy = 2µy ∀t

(2)

Cov (xt, xt+k) =Cov (yt + yt−2, yt+k + yt+k−2)

=Cov (yt + yt−2, yt+k) + Cov (yt + yt−2, yt+k−2)

=Cov (yt, yt+k) + Cov (yt−2, yt+k) + Cov (yt, yt+k−2) + Cov (yt−2, yt+k−2)

=λk + λk+2 + λk−2 + λk

=2λk + λk+2 + λk−2 ∀t

Where λk = Cov (yt, yt+k) does not depend on t by stationarity of yt.

This concludes the proof.

(b) I do not believe that xt is strictly stationary, since it is made up of

stationary series: xt = yt + yt−2.
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Exercise 2

(a)

E
(
(x̂t − xt)

2) = E

[(
1

2
(2xt + e1t + e2t)− xt

)2
]

= E

[(
1

2
(e1t + e2t)

)2
]

=
1

4

(
E
(
e21t
)
+ E

(
e22t
)
+ 2E (e1te2t)

)
=

1

4
(1 + 4 + 0) =

5

4

(b)

E
(
(λ1y1t + λ2y2t − xt)

2)
=E

(
(λ1 (xt + e1t) + λ2 (xt + e2t)− xt)

2)
=E

(
((λ1 + λ2 − 1)xt + λ1e1t + λ2e2t)

2)
Let λ1 + λ2 = 1, then:

MSE = E
(
(λ1e1 + λ2e2t)

2)
= λ21 + 4 (1− λ1)

2

FOC :

2λ1 + 8 (1− λ1) (−1) = 0

λ1 = 4/5 −→ λ2 = 1/5
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Exercise 3

(a)

β̂ =

(
1

T

T∑
t=1

x2t

)−1(
1

T

T∑
t=1

xt (βxt + et)

)

=

(
1

T

T∑
t=1

x2t

)−1

︸ ︷︷ ︸
p−→E(x2

t)
−1

(
1

T

T∑
t=1

xtet

)
︸ ︷︷ ︸

p−→E(xtet)

+β

E
(
x2t
)−1

= 8/3

E (xtet) = E (0.5xt−1 + εt + ηt) (0.8et−1 + ηt)

= 0.4E (xt−1et−1) + E
(
η2t
)
̸= 0

Since xt and et are correlated, β̂ is inconsistent!

(b)

β̃ =

(
1

T

T∑
t=1

ztxt

)−1(
1

T

T∑
t=1

ztyt

)

=

(
1

T

T∑
t=1

ztxt

)−1(
1

T

T∑
t=1

zt (βxt + et)

)

= β +

(
1

T

T∑
t=1

ztxt

)−1(
1

T

T∑
t=1

ztet

)
√
T (β̃ − β) =

(
1

T

T∑
t=1

ztxt

)−1(
1√
T

T∑
t=1

ztet

)

(
1

T

T∑
t=1

ztxt

)−1

p−→ E (ztxt)
−1 = E ((εt + vt) (0.5xt−1 + εt + ηt))

−1 = E
(
ε2t
)−1

= 1(
1√
T

T∑
t=1

ztet

)
d−→ N

(
0,E

(
z2t
)
E
(
e2t
))

= N

(
0, 2

1

1− 0.64

)
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In combination, this tells us (using Slutsky):

√
T (β̃ − β)

d−→ N

(
0,

2

(1− 0.64)

)
= N(0, 5.6)

Exercise 4

(a)

P

(
ȳ2 >

ln(T )

T

∣∣∣∣ yt = µ+ εt

)
= P

( 1

T

T∑
t=1

yt

)2

>
ln(T )

T

∣∣∣∣∣∣ yt = µ+ εt


= P

( 1

T

T∑
t=1

µ+ εt

)2

>
ln(T )

T

 = P

(µ+
1

T

T∑
t=1

εt

)2

>
ln(T )

T


= P

((
ln(T )

T

)1/2

< µ+
1

T

T∑
t=1

εt

)
+ P

(
µ+

1

T

T∑
t=1

εt < −
(
ln(T )

T

)1/2
)

= P

(
1√
T

T∑
t=1

εt <
√
Tµ− ln(T )1/2

)
+ P

(
1

T

T∑
t=1

εt < − ln(T )1/2 −
√
Tµ

)

Since 1√
T

∑
εt ⇒ N(0, 1) :

= Φ
(√

Tµ− ln(T )T/2
)
+Φ

(
− ln(T )1/2 −

√
Tµ
)

T→∞−−−→ Φ(∞)+Φ(−∞) = 1

(b)

P

(
ȳ2 <

ln(T )

T

∣∣∣∣ yt = εt

)
= P

( 1

T

T∑
t=1

yt

)2

<
ln(T )

T

∣∣∣∣∣∣ yt = εt


= P

( 1

T

1∑
t=1

εt

)2

<
ln(T )

T

 = P

( 1√
T

T∑
t=1

εt

)2

< ln(T )


∼= P

(
χ2
1 < ln(T )

) T→∞−−−→ 1
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Honoré

Exercise 1

(1) MLE:

L =
n∏

i=1

P (y = yi | xi)

=
n∏

i=1

P (y = 1 | xi)yi (1− P (y = 1 | xi))1−yi

=
n∏

i=1

[
exp (x′iβ)

1 + exp (x′iβ)

]yi [ 1

1 + exp (x′iβ)

]1−yi

l =
n∑

i=1

yi ln

(
exp (x′iβ)

1 + exp (x′iβ)

)
+ (1− yi) ln

(
1

1 + exp (x′iβ)

)
=

n∑
i=1

yix
′
iβ − ln (1 + exp (x′iβ))

∂l

∂b
=

n∑
i=1

yix
′
i −

exp (x′ib)

1 + exp (x′ib)
x′i

!
= 0

∂2l

∂b2
= −

n∑
i=1

[
exp (x′ib)xi (1 + exp (x′ib))− exp (x′ib)xi exp (x

′
ib)

(1 + exp (x′ib))
2 x′i

]
= −

n∑
i=1

exp (x′ib)xi
1 + exp (x′ib)

(
1− exp (x′ib)

1 + exp (x′ib)

)
x′i

= −
n∑

i=1

exp (x′ib)

1 + exp (x′ib)

1

1 + exp (x′ib)
xix

′
i

−E
(
∂2e

∂b2

)−1

= n · E
[

exp (x′ib)

1 + exp (x′ib)

1

1 + exp (x′ib)
xix

′
i

]−1

Thus:

√√√√√
n(b− β)

d−→ N

(
0,E

[
exp (x′ib)

1 + exp (xi′b)

1

1 + exp (x′ib)
xix′i

]−1
)
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(2)

√
n(b− β)

d−→ N
(
O,A−1BA−1

)
∂f (xi, β)

∂β
=

exp (x′iβ)

1 + exp (x′iβ)

1

1 + exp (x′iβ)
xi

A = E
[(

∂f (xi, β)

∂β

)(
∂f (xi, β)

∂β

)′]
= E

[
exp (2x′iβ)

(1 + exp (x′iβ))
4xix

′
i

]
B = E

[
E
(
ε2i | xi

)(∂f (xi, β)
∂β

)(
∂f (xi, β)

∂β

)′]
= E

[
exp (x′iβ)

(1 + exp (x′iβ))
2

exp (2x′iβ)

(1 + exp (x′iβ))
4x

′
ix

′
i

]

(3)
√
n(b− β)

d−→ N(0, V )

Let it be efficient GMM : V = (G′S−1G)
−1

G = E
(
∂f (xi, β)

∂β

)
= E

[
exp (x′iβ)

(1 + exp (x′iβ))
2xix

′
i

]
S = E

[
E
(
ε2i | xi

)
xix

′
i

]
= E

[
exp (x′iβ)

(1 + exp (x′iβ))
2xix

′
i

]
√
n(b− β)

d−→ N

(
0,E

[
exp (x′iβ)

(1 + exp (x′iβ))
2xix

′
i

]−1
)

(same as in (1))

(4) β̂
p−→ argmax

b
E (ln (f (x′ib))) ≡ β̃ ̸= β

√
n(β̂ − β̃)

d−→ N

(
0,E

(
∂2 ln (f (x′iβ))

∂β∂β′

)−1

V (ε̃i | xi)E
(
∂2 ln (f (x′iβ))

∂β∂β′

)−1
)

It will be inconsistent but it will choose the ”best” estimator in the class

of f(·).
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Exercise 2

(1) This will lead to issues since we are actually regressing y on its lagged

values. This means we have an endogenous error term & the estimator is

not consistent.

(2) We should take first differences:

t regression equation

5 ∆yi5 = ∆x′i5β1 +∆yi4β2 +∆εi5

4 ∆yi4 = ∆x′i4β1 +∆yi3β2 +∆εi4

3 ∆yi3 = ∆x′i3β1 +∆yi2β2 +∆εi3

We can then use the following instruments:

t instruments

5 yi3, yi2, yi1 {xis}5s=1

4 yi2, yi1 {xis}5s=1

3 yi1 {xis}5s=1

Note: cannot use forward looking instrument due to exogeneity constraint.

We must assume that the instruments are valid. The model is over-

identified if there are more instruments than regressors.

Exercise 3

(1) Conditional on age, the assignment is independent of the outcomes that

a person would have.
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(2)

ATE = E (Y1 − Y0) = E (E (Y1 | X1, D = 1)− E (Y0 | X1, D = 0))

=
3

17

(
100 + 80

2
− 80

)
+

4

17

(
55 + 50

2
− 55 + 65

2

)
+

3

17

(
40− 50 + 30

2

)
+

4

17

(
40 + 35

2
− 45 + 20

2

)
+

3

17

(
20 + 25

2
− 25

)
∼= 0.735
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Exercise 1

First, notice that by y0 = 0 we know that

f (y1) = f (ε1) ⇒ y1 ∼ N(0, 1)

f (yt | yt−1) = f (∅yt−1 + εt | yt−1) ⇒ yt | yt−1 ∼ N (ϕyt−1, 1)

f (Y1:50, Y52:100) =f (Y52:100 | Y1:50) f (Y1:50)

=f (Y52:100 | Y1:50)
50∏
t=2

f (Yt | Yt−1) f (Y1)

=f (Y52:100 | Y1:50) f (Y1)
50∏
t=2

f (Yt | Yt−1)

=f (Y52:100 | Y1:50)
1√
2π

exp

(
−1

2
Y 2
1

) 50∏
t=2

1√
2π

exp

(
−1

2
(Yt − ϕYt−1)

2

)

=
100∏
t=53

f (Yt | Yt−1, Y1:50) f (Y52 | Y1:50)

· 1√
2π

exp

(
−1

2
Y 2
1

) 50∏
t=2

1√
2π

exp

(
−1

2
(Yt − ϕYt−1)

2

)

=f (Y52 | Y1:s0)
100∏
t=53

1√
2π

exp

(
−1

2
(Yt − ϕYt−1)

2

)

· 1√
2π

exp

(
−1

2
Y 2
1

) 50∏
t=2

1√
2π

exp

(
−1

2
(Yt − ϕYt−1)

2

)

At this point, we should find out how Y52 is distributed:

Y52 = ϕY51 + ε52 = ϕ2Y50 + ϕε51 + ε52

⇒ Y52 ∼ N
(
ϕ2Y50, 1 + ϕ2

)
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Use this information in the expression above to find:

f (Y1:50, Y52:100) =
1√

2π (1 + ϕ2)
exp

(
− 1

2 (1 + ϕ2)

(
Y52 − ϕ2Y50

)2)
·

100∏
t=53

1√
2π

exp

(
−1

2
(Yt − ϕYt−1)

2

)

· 1√
2π

exp

(
−1

2
Y 2
1

) 50∏
t=2

1√
2π

exp

(
−1

2
(Yt − ϕYt−1)

2

)

=

(
1√
2π

)99

exp

[
−1

2

(
Y 2
1 +

(Y52 − ϕ2Y50)
2

1 + ϕ2

)]

·
50∏
t=2

exp

[
−1

2
(Yt − ϕYt−1)

2

]
·

100∏
t=53

exp

[
−1

2
(Yt − ϕYt−1)

2

]
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Exercise 2

yt − µ = ut

1

T

T∑
t=1

yt − µ =
1

T

T∑
t=1

ut =
1

T

T/2∑
t=1

ut +
T∑

t=T/2+1

ut


=

1

T

T/2∑
t=1

ut +
T∑

t=T/2+1

εt +
T∑

t=T/2+1

εt−1


=

1

T

T/2∑
t=1

ut +
T∑

t=T/2+1

εt +
T∑

t=T/2+1

εt + εT/2 − εT


=

1

T

T/2∑
t=1

ut +
2

T

T∑
t=T/2+1

εt +
εT/2 − εT

T

√
T (ȳ − µ) =

1√
T

T/2∑
t=1

ut +
2√
T

T∑
t=T/2+1

εt +
εT/2 − εT√

T

=
1√
T

√
2√
2

T/2∑
t=1

ut +
2√
T

√
2√
2

T∑
t=T/2+1

εt +
εT/2 − εT√

T

=
1√
2

1

(T/2)1/2

T/2∑
t=1

ut︸ ︷︷ ︸
d−→N(0,1)

+
√
2

1

(T/2)1/2

T∑
t=T/2+1

εt︸ ︷︷ ︸
d−→N(0,1)

+
εT/2 − εT√

T︸ ︷︷ ︸
p−→0

√
T (ȳ − µ)

d−→ N(0,
1

2
+ 2) = N(0,

5

2
)
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Exercise 3

(a)

yt = εt+1β + ut

β̂ =

(
1

T

T∑
t=1

ε2t+1

)−1(
1

T

T∑
t=1

εt+1 (εt+1β + ut)

)

= β +

(
1

T

T∑
t=1

ε2t+1

)−1(
1

T

T∑
t=1

εt+1vt

)

β̂ − β =

(
1

T

T∑
t=1

ε2t+1

)−1(
1

T

T∑
t=1

εt+1ut

)
(1)

We know

(
1

T

T∑
t=1

ε2t+1

)−1

P−→ E
(
ε2t+1

)−1
= 1 (2)

Now, look at the other term. Note the following:

ut = ut−1 + εt∑
u2t =

∑
u2t−1 + 2

∑
ut−1εt +

∑
ε2t

1

T

∑
ut−1εt =

1

2

[
1

T

∑
u2t −

1

T

∑
u2t−1 −

1

T

∑
ε2t

]

=
1

2

 1

T
u2T︸︷︷︸

1
T (

∑T
t=1 εt)

2

− 1

T

∑
ε2t

 d−→ 1

2

(
χ2
1 − 1

)
(3)

Apply Slutsky in (1) using (2) & (3):
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β̂ − β =

(
1

T

T∑
t=1

ε2t+1

)−1(
1

T

T∑
t=1

εt+1ut

)
d−→ 1

2

(
χ2
1 − 1

)
(b) First, note that (2) would change:

(
1

T

T∑
t=1

ε2t+1

)−1

P−→ E
(
ε2t+1

)−1
=

1

5

Second, (3) would change:

1

T

∑
ut−1εt

d−→ 1

2

(
s2 − 5

)
where s ∼ N(0, 5)

Thus:

β̂ − β
d−→ 1

10

(
s2 − 5

)
=

1

2

(
χ2
1 − 1

)
Exercise 4

(a)

yt = xtβ + ut =⇒ σt = xtut

E (σt | Ωt−1) = E (xt | Ωt−1)E (ut | Ωt−1)

= E (et + γet−1 | Ωt−1)E (εt + θεt−1 | Ωt−1)

= γet−1θεt−1 ̸= 0

Thus, σt is not a MDS.

√
T (β − β) =

[
1

T

∑
x2t

]−1 [
1√
T

∑
σt

]
(1)
[
1
T

∑
x2t
]−1 p−→ Σ−1

xx = E (x2t )
−1

= (σ2
e (1 + γ2))

−1

(2)
[

1√
T

∑
σt

]
d−→ N

(
0,
∑∞

j=−∞ λj

)
where λj is the j-th auto-covariance

of σt.
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λ0 = E
(
σ2
t

)
= E

(
x2tu

2
t

)
= E

(
x2t
)
E
(
v2t
)
= σ2

e

(
1 + γ2

)
σ2
ε

(
1 + θ2

)
λ1 = λ−1 = E (xtxt−1utut−1) = E (xtxt−1)E (utut−1)

= γE
(
e2t−1

)
θE
(
ε2t−1

)
= γσ2

eθσ
2
ε

λj = λ−j = 0 ∀j ⩾ 2

(3) by Slutsky:

[
1

T

∑
x2t

]−1 [
1√
T

∑
σt

]
d−→ N(0, V )

V =
(
σ2
e

(
1 + γ2

))−2 [
2γσ2

eθσ
2
ε + σ2

e

(
1 + γ2

)
σ2
ε

(
1 + θ2

)]
=

2γσ2
eθσ

2
ε + σ2

e (1 + γ2)σ2
ε (1 + θ2)

(σ2
e (1 + γ2))2

(b) We saw, that λ2 = λ−2 = 0. Therefore, we ignore it.

CIgS = [β̂ ± 1.96

√
V̂ /T ]

=

β̂ ± 1.96
1√
T

√(
1

T

∑
x2t

)−2 (
λ̂0 + 2λ̂1

)
=

β̂ ± 1.96
1√
T

√(
1

T

∑
x2t

)−2 (
λ̂x0 λ̂

u
0 + 2λ̂x1 λ̂

u
1

)
=

[
2.1± 1.96

1

10

√
5−2(5 · 4 + 2 · 1 · 1.4)

]
=

[
2.1± 0.196

(
20 + 2.8

25

)1/2
]

= [1.913; 2.287]
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Honoré

Exercise 1

(1) asdf

(a) CI = [β̂ ± 1.96 · SÊ(β̂)] = [−0.652;−0.214]

(b) Since 0.2 is outside the CI, reject.

(2)

xi =


−2

1

1

 −→ x′iβ
∼= −2.189

P (yi = 1 | xi) =
exp (x′iβ)

1 + exp (x′iβ)
∼= 10.078%

(3) Linear: ∂P (yx=1|x1)
∂x1

= β̂1 ∼= 0.307

Logit: ∂P (yx=1|x1)
∂x1

= β̂1P (yi = 1 | xi)P (yi = 0 | xi) ∼= 0.199

Exercise 2

Use first differences. Also note that the exogeneity holds for forward looking

instruments.

Differences:

∆yi4 = γ ·∆yi3 + β ·∆xi4 +∆εi4

∆yi3 = γ ·∆yi2 + β ·∆xi3 +∆εi3

Moment condition: (since E (xis∆εit) = 0 ∀t, s)

E (xis (∆yi4 − γ ·∆yi3 − β ·∆xi4)) = 0; s = 1, 2, 3, 4

E (xis (∆yi3 − γ ·∆yi2 − β ·∆xi3)) = 0; s = 1, 2, 3, 4

Thus we have 8 moment conditions.
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Exercise 3

This is a sequential estimator.

Let f (Xi, µ, ψ) =

 µ−Xi

ψk − (Xi − µ)k


Define

R1 = E

∂
(
ψk − (Xi − µ)k

)
∂µ

 = E
[
k (Xi − µ)k−1

]
= kE

[
(Xi − µ)k−1

]

As we saw in the lecture, R1 = 0 would be sufficient for the limiting

distributions to be the same. If {Xi}ni=1 follow a symmetric distribution, then

R1 = 0 for all even k. For odd k, we would need to correct, i.e. the distributions

won’t be identical!

Exercise 4

(a)
√
n(ρ̂− β)

d−→ N (0, A−1BA−1)

where A = E
[
(exp (xiβ)xi)

2] = E [exp (2xiβ)x
2
i ]

B = E
[
ε2i exp (2xiβ)x

2
i

]
= E

[
E
(
ε2i | xi

)
exp (2xiβ)x

2
i

]
= E

[
exp (xiβ) · exp (2xiβ)x2i

]
= E

[
exp (3xiβ)x

2
i

]
(b)

√
n(β̂ − β)

d−→ N (0, G−1SG−1)

where
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G = E [−yixi exp (−xiβ)]

= E [−E (yi | xi)xi exp (−xiβ)]

= E [−xi]

S = V (f (xi, β)) = V (yi exp (−xiβ))

= E
[
y2i exp (−2xiβ)

]
− E [yi exp (−xiβ)]2

= E
[
E
(
y2i | xi

)
exp (−2xiβ)

]
− E [E (yi | xi) exp (−xiβ)]2

= E [(exp (xiβ) + exp (2xiβ)) exp (−2xiβ)]− E[1]2

= E [exp (−xiβ) + 1]− 1 = E [exp (−xiβ)]

Exercise 5

When (Y1, Y0), i.e. the outcome, is independent of D conditional on X, then it

is also independent of D conditional an P (X). Therefore, one can also match

based on P (x) instead of x.

This does not rely on a functional form or parametric assumptions for

identification.
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