
1 Probability Concepts

P (A ∪ B) = P (A) + P (B) − P (A ∩ B)

P(A|B) =
P(A ∩ B)

P(B)
= P(B|A)

P(A)

P(B)

=
P(B|A)P(A)

P(B|A)P(A) + P(B|Ac)P(Ac)
2 Random Variables
FX (x) = P(X ≤ x) and fX (x) = P(X = xi)
2.1 More than one variable
FX,Y (x, y) = P(X ≤ x, Y ≤ y)

DRV: PX,Y (xi, yj) = P (X = xi, Y = yj)

CRV: P ((X, Y ) ∈ A) =
∫
A

∫
f(x, y)dx dy

Marginal Distribution

DRV CRV

px(xi) =
∑
j

p(xi, yj) fx(x) =
∞∫

−∞
f(x, y)dy

Conditional Distribution

DRV CRV

P (X = xi|Y = yj) =
P (X=xi,Y =yj)

P (Y =yj)
=

PXY (xi,yj)

PY (yj)
fX|Y (x|y) =

fXY (x,y)
fY (y)

Law of total probability

DRV CRV

PX (xi) =
∑
yj

PX|Y (xi|yj)PY (yj) fX (xi) =
∞∫

−∞
fX|Y (xi|yj)fY (yj)dy

2.2 Expectations

DRV CRV

E[X] =
∑
i

xip(xi) E[X] =
∞∫

−∞
xf(x)dx

E[g(X)] =
∑
i

g(xi)p(xi) E[g(X)] =
∞∫

−∞
g(x)f(x)dx

E[X] =

∞∫
0

1 − F (X)dx for any nonnegative RV

Conditional Expectation

DRV CRV
E[X|Y = y] =

∑
x

xpX|Y (x|y) E[X|Y = y] =
∫

xfX|Y (x|y)dx

E[g(X)|Y = y] =
∑
x

g(x)pX|Y (x|y) E[g(X)|Y = y] =
∫

g(x)fX|Y (x|y)dx

Law of Iterated Expectations
EY [Y ] = EX [EY |X (Y |X = x)]

2.3 Transformation of RVs

Let Y = g(X)

fY (y) = fX (g
−1

(y)) · |
d

dy
g
−1

(y)|

fY (y) = fX (g
−1

(y)) · |J|
2.4 Moments

M(t) = E(etX ) mgf

M
(j)

(t) =

∫
x
j
e
tx

fX (x)dx

M
(j)

(0) = E(Xj
)

2.5 (Co)variance and Correlation

DRV CRV

V ar(X) =
∑
i
(xi − µ)2p(xi) V ar(x) =

∞∫
−∞

(x − µ)2f(x)dx

V ar(X) = E[(X − E[X])
2
] = E[X2

] − (E[X])
2

Cov(X,X) = E[(X − µX )(Y − µY )]

= E[XY ] − E[X]E[Y ]

E[XY ] =

∫ ∫
xyf(x, y) dx dy

Cov(X, Y ) =

∞∫
−∞

∞∫
−∞

(x − µX )(y − µY )

· f(x, y) dx dy

ρ =
Cov(X, Y )√

V ar(X)V ar(Y )
3 Selected Probability Distributions

3.1 Binomial

p(k) =

(n
k

)
p
k
(1 − p)

n−k

E[X] = np

V ar(X) = np(1 − p)

M(t) = (1 − p + pe
t
)
n

Note: if n = 1, it’s a
Bernoulli distribution.

3.2 Poisson

p(k) =
λke−λ

k!

E[X] = λ

V ar(X) = λ

M(t) = e
λ(et−1)

3.3 Uniform

f(x) =
1

b − a

E[X] =
1

2
(a + b)

V ar(X) =
1

12
(b − a)

2

M(t) =
ebt − eat

(b − a)t

3.4 Univariate Normal

f(x) =
1

σ
√

2π
e
− 1

2σ2 (x−µ)2

E[X] = µ

V ar(X) = σ
2

M(t) = e
µt

e
σ2t2

2

χ2 Distribution

U :=
n∑

i=1

Z
2
i

U ∼ χ
2
n

E[U] = n, ∀n ≥ 1

V ar(U) = 2n, ∀n ≥ 1

t Distribution

T :=
Z√
U/n

T ∼ tn

E[T ] = 0, ∀n ≥ 2

V ar(T ) =
n

n − 2
, ∀n ≥ 3

F Distribution

W :=
U/m

V/n

W ∼ Fm,n

E[W ] =
n

n − 2
∀n ≥ 3

V ar(W ) =
2n2(m + n − 2)

m(n − 2)2(n − 4)
∀n ≥ 5

3.5 Multivariate Normal
Notes on matrix algebra:Let Σ be a positive definite
matrix. Then it can be factored as Σ = AA′. A =
Σ1/2, and then Σ−1 = (A′)−1A−1. |A|−1 = |A−1|
and |A| = |A′|.

f(x) =
1

σ
√

2π
e
− 1

2σ2 (x−µ)2

E[X] = µ

V ar(X) = σ
2

M(t) = e
µt

e
σ2t2

2

Theorems
A Linear functions of X are normally distributed

Y = η + BX ∼ Nk

(
η + Bµ,BΣB′

)
B X has density given by

fX (x) = 1

(2π)p/2|Σ|1/2
exp

{
− 1

2
(x − µ)′Σ−1(x − µ)

}
C Independent normally distributed RVs are jointly normal.

X = (X′
1, X′

2)′ ∼ Np+q (µ,Σ)

µ =

(
µ1
µ2

)
and Σ =

(
Σ1 0
0 Σ2

)
D Conditional normal distribution

(X1|X2 = x2) ∼ N
(
µ1 + Σ12Σ

−1
22 (x2 − µ2) ,Σ11 − Σ12Σ

−1
22 Σ21

)
E Suppose X2 ∼ N (µ2,Σ22) and X1|X2 = x2 ∼ N (A + Bx2,Ω).

Then X = (X′
1, X′

2)′ has a multivariate normal distribution(
X1
X2

)
∼ N

((
A + Bµ2

µ2

)
,

(
BΣ22B′ + Ω BΣ22

Σ22B′ Σ22

))
F Sums of independent normals

X1 + X2 ∼ N (µ1 + µ2,Σ1 + Σ2)

Let X ∼ Np(µ,Σ). Also let X = (X′
1, X′

2)′, µ =

(µ′
1, µ′

2)′, and Σ =

(
Σ11 Σ12
Σ21 Σ22

)
.

G The marginal distribution of X1 is Nk(µ1,Σ11)

H For a normal, a zero correlation implies independence.

I Characterizing independence of linear combinations of
normal variables.
If X ∼ Np(µ,Σ), B is a p × k matrix, and

C is a p × m matrix, then B′X and C′X
are independent iff B′ΣC = 0.

Note that B′X and C′X are jointly normal and

B′ΣC is the covariance.

Quadratics: Assume A is symmetric, then Y ′AY is a
quadratic form.

J If X ∼ Np(µ,Σ) where Σ has rank p,

then (X − µ)′Σ−1(X − µ) ∼ χ2
p.

K Let M denote an idempotent p × p matrix with rank k,

then Z′MZ ∼ χ2
k

M = PΛP ′, where Λ contains the eigenvalues of M
on the diagonal,
and the rows of P are the orthonormal eigenvectors.

Then M = [P1 P2]

[
Ik 0
0 0

] [
P ′
1

P ′
2

]
= P1P ′

1

Thus, P ′
1Z ∼ N(0, P ′

1P1), where P ′
1P1 = Ik

L Let X = PZ, and Q = Z′AZ, where PA = 0,
then X and Q are independent.

M Let Q1 = Z′A1Z, and Q2 = Z′A2Z, where A1A2 = 0.
Then Q1 and Q2 are independent.

4 Some Useful Inequalities
4.1 Jensen’s Inequality

g(x) concave g(x) convex
E[g(x)] ≤ g(E[X]) E[g(x)] ≥ g(E[X])

4.2 Chebyshev’s and Markov’s Inequality
If X is a random Variable with mean µ and variance

σ2, then

P (|X − µ| ≥ ε) ≤
σ2

ε2
∀ε > 0

P (|X| ≥ ε) ≤
E(|X|p)

εp
∀ε > 0 (Markov)

5 Large Sample Theory

Xn
as−→ X if P {ω| limn→∞ Xn(ω) = X(ω)} = 1

Xn
p

−→ X if ∀ε > 0, lim
n→∞ P(|Xn − X| ≥ ε) = 0

Xn
ms−→ X if lim

n→∞ E
[
(Xn − X)2

]
= 0

Xn
d→ X if limn→∞ FXn

(x) = FX (x)

Relationship between convergences

• If Xn
a.s.−→ X then Xn

p
−→ X

• If Xn
ms−→ X then Xn

p
−→ X

• If Xn
p

−→ X then Xn
d−→ X

Slutsky’s TheoremIf

Xn
D−−→ X ∈ Rk, where X can be random

Yn
P−−→ A ∈ Rp, where A is fixed

Zn
P−−→ B ∈ Rp×k, where B is fixed

Then, Yn + ZnXn
D−−→ A + BX

5.1 Law of Large Numbers

The sample meanBy LLN: X̄
a∼ N

(
µ, σ2

n

)
weak LLNLet X1, X2, . . . be a sequence of random

variables with E(Xi) = µ, and Var(Xi) = σ2, and
Cov(Xi,Xj) = 0 ∀i ≠ j. Then one can use Chebyshev

to show that:

X̄
p

−→ µ
strong LLNLet X1, X2, . . . be i.i.d. with E(Xi) =

µ < ∞, then without saying anything about 2nd mo-
ments:

X̄
a.s.−→ µ

5.2 Central Limit Theorem
Let Y1, Y2, ... be a sequence of k-dimensional i.i.d.
random vectors with E[Yi] = µY and V ar(Yi) = Σ.

√
nΣ

− 1
2 (Ȳn − µ)

d−→ N(0, Ik)

lim
n→∞P (

√
nΣ

− 1
2 (Ȳn − µ) ≤ y) = Φk(y), ∀y ∈ Rk

Delta MethodLet Un denote a sequence of scalar ran-
dom variables, and let Vn =

√
n(Un) − a, where a is

a constant. Let g(·) be a continuously differentiable

function. Suppose Vn
p

−→ V ∼ N(µ, σ2). Then

√
n (g (Un) − g(a)) ⇒

dg(a)

da
V ∼ N

(
0,

[
dg(a)

da

]2
σ
2
)

√
n (g (Un) − g(a))

⇒
dg(a)

da
V ∼ N

(
0,

[
dg(a)

da

]
Σ

[
dg(a)

da

]
,

)
6 Estimators

• An estimator is unbiased, if E(θ̂) = θ. Where

Bias is defined as Bias(θ̂) = E(θ̂) − θ

• Loss Function , say L(θ̂, θ) = (θ̂ − θ)2 =
quadratic loss . This is not the same as ex-
pected quadratic loss, which is MSE:

E(L(θ̂, θ)) = E
(
(θ̂ − θ)

2
)

= mse(θ̂)

= Var(θ̂) + [Bias(θ̂)]
2

• Conclusion: for unbiased estimator mse(θ̂) =

Var(θ̂)

• An estimator is consistent, if θ̂
p
→ θ

6.1 The Likelihood Function

L(θ, Y ) = f(Y |θ)

S(θ, y) =
∂ ln f(y|θ)

∂θ
=

1

f(y|θ)

∂f(y|θ)

∂θ

E[S(θ, Y )] =

∫ ∂f(y|θ)

∂θ
dy =

∫
S(θ, y)f(y|θ)dy = 0

I(θ) = −E

[
∂S(θ, Y )

∂θ

]
= E

[
S(θ, Y )

2
]

= Var[S(θ, Y )]
The Cramer-Rao inequality and unbiased estima-
tors

Var(θ̂) ≥
1

Var(S(θ, Y ))
= I(θ)

−1

Maximum Likelihood Estimators

max
θ

Ln(θ) = max
θ

n∏
i=1

f
(
Yi|θ

)
θ̂mle

p
→ θ0

I (θo)
1/2 √

n
(
θ̂mle − θ0

)
d→ N(0, I)

θ̂mle
a∼ N

(
θ0, n

−1
I (θ0)

−1
)

6.2 Method of Moment Estimators
Assume µ = h(θ0), where µ is l × 1, θ0 is k × 1 with

k ≤ l. Then θ̂mm solves

min
θ

Jn(θ) = min
θ

(Ȳ − h(θ))
′
(Ȳ − h(θ))

θ̂mm
p
→ θ0

θ̂mm
a∼ N (θ0, V )

V = n
−1

H
−1

[
∂h (θo)

∂θ′

]′
Σ

[
∂h(θ)

∂θ′

]
H

−1

H =

[
∂h (θo)

∂θ′

]′ [ ∂h (θo)

∂θ′

]
7 Sufficient Statistics
Pdf of Y as fY (y|θ), the pdf of S as fS(s|θ) and the
conditional pdf of Y given S = s as fY |S(y|s, θ) =

fY |S(y|s), that is the conditional density of Y given

S does not depend on θ.
Factorization Theorem

θ̂(Y ) = arg max
θ

f(Y |θ) = arg max
θ

g(S|θ) = θ̂(S)

Rao-Blackwell TheoremY is RV with mean µ and

variance σ2
Y . X is another RV. Let µ(x) = E[Y |X = x].

Then Var(µ(x)) ≤ σ2
Y :

E(µ(X)) = µ

Y = µ(X) + (Y − µ(X))

σ
2
Y = Var(µ(X)) + Var(Y − µ(X))

Var(µ(X)) ≤ σ
2
Y

Use this result in estimations: Suppose θ̂(Y ) is an

unbiased estimator of θ, so that θ = E[θ̂(Y )], and let
S be a sufficient statistic for θ. Then E[θ̃(S)] is an
unbiased estimator of θ but the variance is lower by
Rao-Blackwell.

θ = E[θ̂(Y )] = E[E[θ̂(Y )|S]] = E[θ̃(S)]

8 Hypothesis Tests
8.1 Wald Tests

H0 :θ = θ0 Ha : θ ̸= θ0

ξ =
(
θ̂ − θ0

)′
Ω
−1

(
θ̂ − θ0

)
ξ ∼ χ

2
k under the null

Therefore, we accept H0, if ξ ≤ cv, and reject H0 if
ξ > cv. cv solves P(ξ > cv |θ = θ0) = α.
Power = P(ξ > cv |Ha is true) = P(ξ > cv |θ ≠ θ0).
Because Ha has many values for θ, the power differs
for each value. But assuming that the distribution of

θ̂ was based on CLT (
√

n(θ̂ − θ)
d−→ N(0, V )). Then

Ω = n−1V , and our test statistic becomes

ξ = n
(
θ̂ − θ0

)′
V

−1
(
θ̂ − θ0

)
If the mean of θ̂ is equal to a fixed constant (that is
not θ0), then ξ → ∞, and P(ξ > cv) → 1. The test
has therefore power = 1 for any fixed value of θ under
the alternative. When power → 1, a test is said to be
consistent.
Hypotheses involving linear functions of θ
H0 : Rθ = r0 where R is a j × k matrix with rank j

Ha : Rθ ̸= r0 where R is a j × k matrix with rank j

Rθ̂ ∼ N
(
Rθ,RΩR

′)
ξ =

(
Rθ̂ − r0

)′ (
RΩR

′)−1 (
Rθ̂ − r0

)
ξ ∼ χ

2
j under H0

Hypotheses involving nonlinear functions of θ
H0 : R(θ) = r0

Ha : R(θ) ̸= r0
√

n(R(θ̂) − R(θ)) ⇒ N
(
0, HV H

′)
by delta method

H =
∂R(θ)

∂θ′

R(θ̂)
a∼ N(R(θ), Ω̃) where Ω̃ = n

−1
HV H

′

ξ =
(
R(θ̂) − r0

)′
Ω̃
−1

(
R(θ̂) − r0

)
8.2 Neyman-Pearson Tests
We choose the probability of a type 1 error (accept
Ha when H0) beforehand (size), and then minimize
the probability of making a type 2 error (maximize
power).
Neyman-Pearson LemmaChoose critical region
based on the LR to maximize power.

LR(Y ) =
La(Y )

Lo(Y )

W = {y|LR(y) > cv}

P [LR(Y ) > cv|Y ∼ Fo] = α to determine cv
We reject H0 : µ = µ0, if LR is large when Ha :
µ > µ0. We reject H0 : µ = µ0, if LR is small when
Ha : µ < µ0. Since the LR critical regions are the
same for all of the simple hypotheses making up Ha
and each is most powerful, then the LR procedure is
said to be Uniformly Most Powerful (UMP) for H0 vs.
Ha.
8.3 Maximizing Weighted Average Power

Ho : θ = θ0 simple null hypothesis

Ha : θ ∈ Θa composite alternative hypothesis

w(θ) weight function for values of θ ∈ Θa

f(y|θ) density of y, conditional on a value of θ∫
W

f(y|θ)dy power of the test for a particular θ

WAP =

∫
Θa

[∫
W

f(y|θ)dy
]
w(θ)dθ

=

∫
W

[∫
Θa

f(y|θ)w(θ)dθ

]
dy

=

∫
W

g(y)dy

g(Y ) is the density of Y under the assumption that
θ is random with density w(θ). Thus, the prob-
lem is equivalent to testing with a simple alternative
H̃a : y ∼ g(y). Then use NP test:

LR(Y ) =
g(Y )

f (Y |θo)
=

∫
Θa

f(Y |θ)w(θ)dθ

f (Y |θo)
9 Confidence Sets

C(Y ) =

{
θ||(θ̂ − θ)

′
[ 1

n
V̂

]−1
(θ̂ − θ) ≤ χ

2
κ,1−α

}

C(Y ) =

θ̂ ± Z1−α/2 ×

√
1

n
V̂


10 The Bayes Approach to Estimation and In-

ference
10.1 Basic concepts and some jargon

fθ|Y (θ̃|y) =
fY,θ(y, θ̃)

fY (y)
=

fY |θ(y|θ̃)fθ(θ̃)∫
fY,θ(y, θ̃)dθ̃

=
fY |θ(y|θ̃)fθ(θ̃)∫
fY |θ(y|θ̃)fθ(θ̃)dθ̃

Posterior =
Likelihood × Prior

Marginal Likelihood
10.2 Bayes Estimators

min
θ̂

Eθ|Y =y [L(θ̂, θ)] posterior risk

If loss is quadratic, then we know that θ̂ = Eθ|Y =y(θ)

minimizes the MSE, which is just the posterior mean.
10.3 Bayes Credible Sets

Pθ|Y =y(θ ∈ C(y)) = 1 − α

where the notation emphasizes that the probability is
computed using the posterior for θ|Y = y. Because
this holds for all y, we also have

Pθ,Y (θ ∈ C(Y )) = 1 − α

where now the probability is computed over θ and Y .

1



11 Hayashi 1
11.1 Assumptions
11.1.1 Linearity
y = Xβ + ε,X is (n × k)β is (k × 1)
11.1.2 Strict Exogeneity

E
(
εi | X

)
= 0

E
(
εi
)
= E

[
E
(
εi | X

)]
= 0

11.1.3 Full Rank

No multicollinearity. (XX′) has to be invertible.
11.1.4 Homoskedasticity

E
(
ε
2
i | X

)
= σ

2
> 0

E
(
εiεj | X

)
= 0 for i ̸= j

11.1.5 Normality

ε | X ∼ N
(
0, σ

2
I
)

ε

σ
| X ∼ N(0, I)

for inference
11.2 OLS estimation

β̂OLS =
(
X

′
X
)−1

X
′
y =

( 1

n
X

′
X

)−1 ( 1

n
X

′
y

)

=

 1

n

n∑
i=1

xix
′
i

−1  1

n

n∑
i=1

xiyi


for one regressor: β̂1 =

Ĉov(x,y)

V̂ar(x)
, and β̂0 = ȳ − β̂1x̄

ŷ = Xb

P ≡ X
(
X

′
X
)−1

X
′

M ≡ I − P

ŷ = Py = X
(
X

′
X
)−1

X
′
y = Xb

e = My = y − Py = y − ŷ

PX = X

MX = 0

e = My = M(Xβ + ε) = Mε

11.3 Finite sample properties
OLS estimator is unbiased with following variance:

β̂OLS =
(
X

′
X
)−1

X
′
(Xβ + ε)

= β +
(
X

′
X
)−1

X
′
ε

E[β̂] = β +
(
X

′
X
)−1

X
′
E[ε | x] = β

V [β̂ | X] = E
[
(β̂ − E[β̂])(β̂ − E[β̂])

′ | X
]

=
(
X

′
X
)−1

X
′
E
[
εε

′ | X
]
X
(
X

′
X
)−1

= σ
2
(
X

′
X
)−1

CR lower bound (achieved by MLE): 2σ4

n
.

11.3.1 Misspecification
Two models:

A : y = Xβ + Zγ + ϵ

B : y = Xβ + ϵ

OVB:A is true, B is false. Then β̂ is biased.

β̂ = β +
(
X

′
X
)−1

X
′
Zγ︸ ︷︷ ︸

Bias

+
(
X

′
X
)−1

X
′
ε

Irrelevant variable:B is true, A is false. Then β̂ is
unbiased, but inefficient.

V (β̂ | X,Z) ≥ σ
2
(
X

′
X
)−1

= V (β̂ | X)

12 Hayashi 2
12.1 Inference

tj =
β̂j − βj

se
(
β̂j

)
β
0 ∈ β̂j ± t

α
n−K se

(
β̂j

)

12.1.1 Linear restrictions

F =

(
R′β̂ − r

)′ [
R′

(
X′X

)−1
R

]−1 (
R′β̂ − r

)
/p(

(n − k)s2/σ2
)
/(n − k)

=

(
e′∗e∗ − e′e

)
/p

e′e/(n − K)
=

(
SSR∗ − SSR

)
/p

SSR/(n − K)

=

(
R2 − R∗2

)
/p(

1 − R2
)
/(n − K)

=

(
SST∗ − SSR

)
/p

SSR/(n − K)

p: number of regressors w/o constant
n − K: number of individuals minus number of regres-
sors with constant
last equation only for regression output useful
12.1.2 Goodness of Fit

R
2

=

∑(
ŷi − ȳ

)2∑(
yi − ȳ

)2 = MSS/TSS

= 1 −
∑

e2i∑(
yi − ȳ

)2 = 1 − (RSS/TSS)

R̂
2

= 1 −
∑

e2i /(n − K)∑(
yi − ȳ

)2 /(n − 1)

= 1 −
(
1 − R

2
) n − 1

n − k
12.1.3 Wald Statistic

V (β̂ | X) is given in outputs. Do not forget to square

SE(β̂).

W =
(
R

′
β̂ − r

)′ [
R

′
V (β̂ | X)R

]−1 (
R

′
β̂ − r

)
= n

(
R

′
β̂ − r

)′ [
R

′ ˆAvar(β̂)R
]−1 (

R
′
β̂ − r

)
W = a(β̂)

′ [∇a(β̂)
′
V̂ (β̂ | X)∇a(β̂)

]−1
a(β̂)

= na(β̂)
′ [∇a(β̂)

′ ˆAvar(β̂)∇a(β̂)
]−1

a(β̂)

13 Hayashi 3: IV and GMM
13.1 Assumptions IV
13.1.1 Linearity

yi = z
′
iδ + εi but E

[
ziεi

]
̸= 0

13.1.2 Ergodicity and Stationarity(
yi, zi, xi

)
ergodic and stationary for LLN.

13.1.3 Exogenous Instrument

E
[
gi
]
= E

[
xiεi

]
= E

[
xi

(
yi − z

′
iδ
)]

= 0

13.1.4 Identification

E
[
xiz

′
j

]
has full rank L where dim(zi) = L ≤ K =

dim(xi)
13.2 Estimator

δ = E
[
xiz

′
i

]−1
E
[
xiyi

]
= Σ

−1
xz σxy

δ̂ =

 1

n

n∑
i=1

xiz
′
i

−1
1

n

n∑
i=1

xiyi

√
n(δ̂ − δ) =

 1

n

n∑
i=1

xiz
′
i

−1
1

√
n

n∑
i=1

xiεi

d−→ E
[
xiz

′
i

]−1 · N(0, S)

d−→ N(0, E
[
xiz

′
i

]−1
SE

[
xiz

′
i

]−1
)

d−→ N(0, E
[
xiz

′
i

]−1
E
[
ε
2
i xix

′
i

]
E
[
xiz

′
i

]−1
)

S = E
[
gig

′
i

]
=
[
(xiεi)(xiεi)

′]
13.2.1 Case 1: exogenous error
Assume

E
[
εi | xi, zi

]
= 0

E
[
ε
2
i | xi, zi

]
= f(xi)

Then it is pretty much OLS:

δ̂OLS
p

−→ δ

√
n(δ̂OLS − δ)

d−→ N(0, V )

V = E
[
ziz

′
i

]−1
E
[
ε
2
i ziz

′
i

]
E
[
ziz

′
i

]−1

And for GMM estimator:

W = S
−1

= E
[
ε
2
i xix

′
i

]−1

√
n
(
δ̂
(
Ŝ
−1

)
− δ

)
d−→ N

(
0,
(
Σ
′
xzS

−1
Σxz

)−1
)

13.2.2 Case 2: endogenous error with homoskedastic-
ity

Assume

E
[
εi | zi

]
̸= 0

E
[
εi | xi

]
= 0

E
[
ε
2
i | xi, zi

]
= σ

2

OLS-estimator:

δ̂OLS
p
→ δ + E

[
ziz

′
i

]−1
E
[
ziεi

]
= δ̄

√
n
(
δ̂OLS − δ̄

)
d→ N(0, V )

V = E
[
ziz

′
i

]−1
E
[
u
2
i ziz

′
i

]
E
[
ziz

′
i

]−1

= E
[
ziz

′
i

]−1
E
[
u
2
i |zi

]
ui = z

′
iδ̄ − yi

Efficient GMM estimator:

W = S
−1

= E
[
ε
2
i xix

′
i

]−1

√
n
(
δ̂
(
Ŝ
−1

)
− δ

)
d−→ N

(
0,
(
Σ
′
xzS

−1
Σxz

)−1
)

13.2.3 Case 3: endogenous error with heteroskedas-
ticity

Assume

E
[
εi | zi

]
̸= 0

E
[
εi | xi

]
= 0

E
[
ε
2
i | xi, zi

]
= f(xi)

Then we use the GMM estimator which also works in

the case of overidentification with W = E
[
xix

′
i

]−1
:

√
n(δ̂(Ŵ ) − δ)

=
(
S
′
xzŴSxz

)−1
S
′
xzŴ

 1
√

n

n∑
i=1

xiεi


d−→

(
Σ
′
xzWΣxz

)−1
Σ
′
xzW · N(0, S)

d−→ N (0,Ω)

Ω =
(
Σ
′
xzWΣxz

)−1
Σ
′
xzWSWΣxz

(
Σ
′
xzWΣxz

)−1

14 Notes

[
x
y

]′ [ a b
c d

]−1 [ x
y

]
=

dx2 − (b + c)xy + ay2

ad − bc
14.1 Couples’ data

β̂2SLS − β

=

 1

n

n∑
i=1

2∑
j=1

xijz
′
ij

−1  1

n

n∑
i=1

2∑
j=1

xijεij


√

n
(
β̂2SLS − β

)

=

 1

n

n∑
i=1

2∑
i=1

xijz
′
ij

−1

︸ ︷︷ ︸
A

 1
√

n

n∑
i=1j=1

2∑
ij

xij


︸ ︷︷ ︸

B

LLN: A
p

−→ E

 2∑
i=1

xijz
′
ij

 = C

B
d−→ N

0, E

 2∑
j=1

xijεij

 2∑
j=1

xijεij

′ = D

CLT:
√

n
(
β̂2SLS − β

)
d−→ N

(
0, C

−1
DC

−1
)

14.2 Normal distribution

E
[
X

2
]
= µ

2
+ σ

2

E
[
X

3
]
= µ

3
+ 3µσ

2

E
[
X

4
]
= µ

1
+ 6µ

2
σ
2

+ 3σ
1

E
[
X

2|µ = 0
]
= σ

2

E
[
X

3|µ = 0
]
= 0

E
[
X

4|µ = 0
]
= 3σ

4

2



1 Some Basic Time Series Concepts
1.1 Strict Stationarity

fy1 = fy2 = fy3 = . . .

1.2 Covariance Stationarity

µt = E (Yt) = µ ; λt,k = λk for all t

1.3 Martingale (Difference)

E
{
Yt | Ωt−1

}
= Yt−1 (M)

E
{
Yt | Ωt−1

}
= 0 (MDS)

1.4 AR(p) process
1.4.1 VAR(1)

Yt = ΦYt−1 + εt = Φ
t
Y0 +

t−1∑
i=0

Φ
i
εt−i

A(L)Yt = (I − A1L − . . . − ApL
p
)Yt = εt

For covariance stationarity, all eigenvalues of Φ are

less than one in modulus, thus Φt → 0 as t → ∞. OR
|A(z)| has roots outside unit circle.
1.4.2 AR(p)
AR(p) as VAR(1) by companion form:

Zt = ΦZt−1 + et ; Zt =
[
Yt . . . Yt−p+1

]′

Φ =


ϕ1 ϕ2 . . . ϕp
1 0 . . . 0

.

.

.

.

.

.

.

.

.
0 0 . . . 0


et = [εt 0 . . . 0]

′
1.5 MA(q) are stationary

Yt = εt − . . . − θqεt−q ; εt ∼ iid
(
0, σ

2
)

E (Yt) = 0 ; Var (Yt) = σ
2

1 +

q∑
i=1

θ
2
i



cov
(
YtYt−k

)
= σ

2

−θκ +

q−k∑
j=1

θjθk+j

 for k ≤ q

cov
(
YtYt−k

)
= 0 for |k| > q

1.5.1 Invertibility restriction
MA(1): |θ| < 1 or roots of θ(z) = (1 − θz)
greater 1 in modulus. MA(q): roots of θ(z) =(
1 − θ1z − θ2z2 − . . . − θqzq

)
greater 1 in modulus.

Need the restriction for identification as we cannot be
sure if we recover θ or θ̃ = θ−1, with σ̃2 = σ2θ2.
1.6 Autocovariance generating functions

λ(z) =
∞∑

j=−∞
λjz

j

λ(z) = σ
2
θ(z)θ

(
z
−1

)
for MA(q)

1.7 ARMA(p,q) models

ϕ(L)Yt = θ(L)εt

λ0 = σ
2

1 +
(ϕ − θ)2

1 − ϕ2


λh = σ

2

(ϕ − θ)ϕ
h−1

+
(ϕ − θ)2ϕh

1 − ϕ2


For the ACGF transform into MA(q) representation:

λ(z) = σ
2
c(z)c

(
z
−1

)
= σ

2
ϕ(z)

−1
θ(z)ϕ

(
z
−1

)−1
θ
(
z
−1

)
2 The Likelihood Function for Time Series

f
(
Y1:T

)
=f

(
YT | Y1:T−1

)
f
(
Y1:T−1

)
=f

(
YT | Y1:T−1

)
f
(
YT−1 | Y1:T−2

)
·

f
(
Y1:T−2

)
=

T∏
t=2

f
(
Yt | Y1:t−1

)
f (Y1)

3 The Kalman Filter
3.1 The Basic Linear Model

yt = A
′
xt + H

′
ξt + wt ; E

(
wtw

′
t

)
= R

ξt = Fξt−1 + vt ; E
(
vtv

′
t

)
= Q

3.2 Signal extraction and the Kalman Filter

y1:t =
{
yi
}t
i=1

ξt|k = E
(
ξt | y1:k

)
Pt|k = var

(
ξt | y1:k

)
[

wt
vt

]
∼ Niid

([
0
0

]
,

[
R G

G′ Q

])
3.2.1 Kalman Filter equations

ξt|t−1 = Fξt−1|t−1 (µ1)

yt|t−1 = A
′
xt + H

′
ξt|t−1 (µ2)

Pt|t−1 = FPt−1|t−1F
′
+ Q (Σ11)

ht = H
′
Pt|t−1H + R + H

′
G

′
+ GH (Σ22)

Kt = (Pt|t−1H + G)h
−1
t

(
Σ12Σ

−1
22

)
ηt = yt − yt|t−1 (z2 − µ2)

ξt|t = ξt|t−1 + Ktηt

(
µ1 + Σ12Σ

−1
22 (z2 − µ2)

)
Pt|t = Pt|t−1 − KtH

′
(Pt|t−1 + G)(

Σ11 − Σ12Σ
−1
22 Σ21

)
If ξt is covariance stationary, then ξ0|0 = E (ξ0) = 0,

P0|0 = Var (ξ0).

3.3 Hamilton

yt = ck + βkxt + ϵk,t, ϵk,t ∼ N
(
0, σk

)
ξi,t−1 = P

(
st−1 = i | ỹt−1; θ

)
P
(
st = j | st−1 = i

)
= Pij =

[
p00 p01
p10 p11

]
ηjt = f

(
yt | st = j, ˜yt−1; θ

)

=
1

√
2πσ

exp

−
(
yt − cj − βjxt

)2
2σ2

j


3.4 Likelihood function
Gaussian density for y1:T

f
(
y1:T

)
=

T∏
t=1

f
(
yt | y1:t−1

)
; y1:0 = {∅}

f
(
yt | y1:t−1

)
=

(
1√

2π |ht|

)n

exp

(
−

1

2
η
′
th

−1
t ηt

)
Then the likelihood is:

f
(
Y1:T

)
=

(
1

√
2π

)nT
 T∏

t=1

|ht|
−1/2


exp

−
1

2

T∑
t=1

(
η
′
th

−1
t ηt

)
ηt =yt − yt|t−1

This is the same expression as in the last section with

ht = σ2
t−1 and yt|t−1 = µt−1.

4 The Linear model with Serially Correlated
Data

4.1 Asymptotics for serially correlated processes
4.1.1 Ergodicity
A process is ergodic if its elements are asymptotically
independent.
Suppose {zt} is stationary and ergodic with E (zt) =

µ. Then T−1∑T
i=1 zt

a.s−→ µ.

If zt is stationary and ergodic, then so is xt = f (zt)
for arbitrary function f.
4.1.2 CLT for martingale difference sequences (MDS)
Let {gt} be a (possibly vector-valued) mds that is

stationary and ergodic with E
(
gtg

′
t

)
= Σgg .

√
Tḡ =

1
√

T

T∑
t=1

gt ⇒ N
(
0,Σgg

)
4.2 Linear and Serially Correlated Regressors

yt = x
′
tβ + εt

4.2.1 Assumptions
(2) {yt, xt} is a stationary and ergodic process
(3) E (εtxt) = 0, or letting gt = εtxt then E (gt) = 0

(4) E
(
xtx

′
t

)
= Σxx which is non-singular

(5) {gt} is a mds with E
(
gtg

′
t

)
= Σgg

If in addition to (2)-(5), E
[(

xt,ixt,j

)2]
is finite for

all i and j, and let ĝt = ε̂txt = (yt − xtβ̂)xt, and

Sĝĝ = 1
T

∑
ĝ2t = 1

T

∑
ε̂2t xtx

′
t. Then

Sĝĝ
p
→ Σgg

4.2.2 OLS

β̂
p
→β

√
T (β̂ − β)

d→N
(
0,Σ

−1
xx ΣggΣ

−1
xx

)
ξW =T (Rβ̂ − r)

′
(
RV̂

β̂
R

′
)−1

(Rβ̂ − r)

ξW ⇒χ
2
m ;

ξW

m
⇒ Fm,∞

AR(1) example:yt = ϕxt−1 + εt and
√

T (ϕ̂ − ϕ) ⇒

N
(
0, σ2Σ−1

xx

)
. Then use from AR(1): Σxx = σ2

1−ϕ2 :

ϕ̂
a∼ N

(
ϕ,

1

T

(
1 − ϕ

2
))

4.3 Let gt not be a MDS

1
√

T

T∑
t=1

gt ⇒ N(0,Ω)

Ω =

T−1∑
j=−T+1

λj −
1

T

T−1∑
j=1

j
(
λj + λ−j

)

→
∞∑

j=−∞
λj

Ω = λ(z = 1)
4.3.1 OLS With Serially Correlated Errors

Let 1√
T

∑T
t=1 gt ⇒ N(0,Ω). Then OLS gives

√
T (β̂ − β) ⇒ N

(
0,Σ

−1
XX

ΩΣ
−1
XX

)
4.4 HAC and HAR inference

Let V̂
β̂

= S
−1
XX

Ω̂S
−1
XX

and ξW = T (β̂ −β)′V̂ −1

β̂
(β̂ −

β). If Ω̂
p

−→ Ω, then V̂
β̂

p
−→ V

β̂
, and ξW ⇒ χ2

k.

4.4.1 Estimators for Ω
With finite sample, impossible to consistently estimate

Ω for all possible sequences
{
λj

}
. Sometimes it is:

Suppose λ|j| = 0 for |j| > q (so gt follows an MA(q)

process). Only estimate the variance and first q auto-
covariances. These are consistent.
4.4.2 HAC Estimators for Ω

Truncated:Ω̂Trunc =
∑k

j=−k λ̂j with λ̂j =

T−1∑T−j
t=1 gtgt+j

Weighted Truncated:Ω̂(w) =
∑k

j=−k wjλ̂j where

wj are weights.

Ω̂
NW

=
k∑

j=−k

wjλ̂j ; w|j| =
k + 1 − |j|

k + 1

These HAC estimators yield test statistics with good
size/power properties in cases when there is limited
autocorrelation.
4.5 OLS and HAC vs. GLS

OLS is perfect if Var(u | X) = Λ = σ2I. When

Λ ̸= σ2I, use

β̂
GLS

=
(
X

′
Λ
−1

X
)−1

X
′
Λ
−1

Y

If Λ is unknown, use feasible GLS:

β̂
FGLS

=
(
X

′
Λ̂
−1

X
)−1

X
′
Λ̂
−1

Y

Λ̂ = Λ(θ̂)
4.6 OLS (with HAC inference) or GLS?

yt = x
′
tβ + ut

E (ut | xt) = 0 ⇒ E (utxt) = 0

ut = ρut−1 + εt where εt
iid∼

(
0, σ

2
)

ỹt = yt − ρyt−1 and x̃t = xt − ρxt−1

εt = ut − ρut−1
For GLS where we regress ỹt on x̃t, we need E (εtx̃) =
0:

E
[(

ut − ρut−1

) (
xt − ρxt−1

)]
= E (utxt) + ρ

2
E
(
ut−1xt−1

)
− ρE

(
utxt−1

)
− ρE

(
ut−1xt

)
= 0

Thus the following four must hold. The first two are
implied by E(ut | xt) = 0. The others need stronger
assumptions.

E (utxt) = 0 ; E
(
ut−1xt−1

)
= 0

E
(
utxt−1

)
= 0 ; E

(
ut−1xt

)
= 0

Exogenous or predetermined:

E
(
ut | xt, xt−1, . . .

)
= 0. Strictly exogenous:

E
(
ut | . . . xt+1, xt, xt−1, . . .

)
= 0. This is needed

for GLS.
5 The Functional Central Limit
5.1 Wiener Process
W (s) defined on s ∈ [0, 1].
We have W (0) = 0.

W
(
ti
)
− W

(
ti−1

)
∼ N

(
0, ti − ti−1

)
are all iid.

Thus: W (1) ∼ N(0, 1). And realizations of W (s) are
continuous with probability 1.

Suppose εt
iid∼ N(0, 1), and ξT (t/T ) = 1√

T

∑t
i=1 εi

is linear interpolation between the points.
5.1.1 Theorem 1 (Weak Convergence of random func-

tions on C[0, 1])
Function cannot go too crazy as T grows and at the
origin.
5.1.2 Theorem 2 (CMT)

g : C[0, 1] → R and ξT (.) ⇒ ξ(.)

g
(
ξT
)
⇒ g(ξ)

5.1.3 Theorem 3 (Functional CLT)

Suppose εt is a MDS with σ2
ε and bounded 2 + δ

moments. Then any function ξT (s) that linearly inter-

polates between the points ξ(t/T ) = 1√
T

t∑
i=1

εi(t/T )

converges in distribution to a Wiener process:

ξT ⇒ σεW

νT =
1

T3/2

T∑
t=1

xt =
1

T

T∑
t=1

 1

T1/2

t∑
i=1

εi


= σε

∫ 1

0
ξT (s)ds ⇒ σε

∫ 1

0
W (s)ds = ν

5.2 Application: Testing for a break
Null and alternative: H0 : δ = 0 vs. Ha : δ ̸= 0

yt = βt + εt, where εt ∼ iid
(
0, σ

2
ε

)
βt =

{
β for t ≤ τ

β + δ for t > τ

5.2.1 Chow Test (known break)

δ̂ = Ȳ2 − Ȳ1

Ȳ1 =
1

τ

τ∑
t=1

yt and Ȳ2 =
1

T − τ

T∑
t=τ+1

yt

δ̂
a∼ N

(
δ, σ

2
ε

(
1

τ
+

1

T − τ

))

ξW =
1

σ̂2
ε

δ̂2(
1
τ

+ 1
T−τ

) ⇒ ξ ∼ χ
2
1

5.2.2 Quandt Test (unknown break)
Compute Chow statistic for many possible values of τ
and use largest.
5.3 Application: Unit root AR(1) model
ϕ = 1. Note that the following distribution is only
negative, when the numerator is: P (ϕ < 0) ≈ 65%

ϕ̂ =

∑
ytyt−1∑
y2
t−1

; T (ϕ̂ − 1) ⇒
1
2

[
χ2
1 − 1

]
∫ 1
0 W (s)2ds

t =

∫ 1
0 W (s)dW (s)[∫ 1
0 W (s)2ds

] 1
2

6 VARs and Related Topics
6.1 Basic Concepts and Notation
6.1.1 VAR and MA representation

A(L)Yt = ηt

A(L) = I − A1L − . . . − ApL
p

Where ηt is a MDS with Ση . Yt is covariance station-
ary. Invert A(L) for MA process:

Yt = C(L)ηt = ηt + C1ηt−1 + C2ηt−2 + . . .

ηt = Yt − E
(
Yt | Y t−1

)
are the one-period-ahead

forecast errors (or Wold shocks).
6.1.2 SVAR and SMA representation
εt is mds vector of STRUCTURAL shocks. Then:

ηt = Hεt ; Var (εt) = Σε

B(L)Yt = H
−1

A(L)Yt = εt (SVAR)

Yt = C(L)Hεt = D(L)εt (SMA)
6.1.3 Objects of interest
Impulse ResponsesWrite the SMA as Yt =∑∞

k=0 Dkεt−k.

SIRFij,h =
∂Yi,t

∂εj,t−h

=
∂Yi,t+h

∂εj,t

= Dij,h

Forecast Error Var DecompSuppose the structural
shocks are mutually uncorrelated. Then

Var
(
Yi,t+h − E

(
Yi,t+h | Yt

))
=

n∑
j=1

h−1∑
k=0

D
2
ij,kσ

2
εj

and the fraction that is explained by the jth shock is

FEV Dij,h =

∑h−1
k=0

D2
ij,kσ2

εj∑n
j=1

∑h−1
k=0

D2
ij,k

σ2
εj

6.2 Invertibility
If nε > nY we cannot recover H for structural shocks.
Also: Can I determine εt from current and lagged Y .
6.3 Identification of H

We can estimate Ση from data and Ση = HΣεH′. We

have n(n + 1)/2 elements in Ση and in Σε, and n2 in

H. Thus, we have n2 too many unknowns.
6.3.1 Restrictions
1. Uncorrelated structural shocks: make Σε diagonal.
Still n(n + 1)/2 too many.
2.1 Scale normalization: drop εt unit: ηt = Hεt.
2.2 Scale normalization: Set Var(εt) = I or Hii = 1
for i = 1, . . . , n. Still n(n − 1)/2 restrictions short.
3. other restrictions, e.g.: timing restriction. Set up-
per triangle of H to zero. I.e. ε2 does not affect Y1,
and ε3 not Y1, Y2 etc.
6.4 Local Projections
Use companion form of the VAR:

Zt = ΦZt−1 + et (AR)

Zt = et + Φet−1 + Φ
2
et−2 + . . . (MA)

Zt+k = Φ
k
Zt + vt+k (Forecast)

Let J = [In 0 . . . 0], then Yt = JZt and et = J′ηt.
Thus

Yt = ηt + JΦJ
′
ηt−1 + JΦ

2
J
′
ηt−2 + . . .

Ck = JΦ
k
J
′

Yt+k = CkYt +

p−1∑
i=1

WiYt−i + ut+k

ut+k has mean zero conditional on (Yt, . . . , Yt−p+1).

Thus this is a regression and Ck are the coefficients
on Yt from Yt+k onto (Yt, . . . , Yt−p+1).

While the LP estimator is inefficient relative to es-
timators of IRS from a VAR, the LP estimators are
simple to construct, and potentially more robust to
miss-specification than the VAR-plugin estimators.
6.5 Examples of Identification Schemes
6.5.1 IV instrument

Split H: H1 is first column, and H∗ the rest.

Yt =H1ε1,t +
∑
k=1

CkH1εt−k + H
∗
ε
∗
t

+
∑
k=1

CkH
∗
ε
∗
t−k

∂Yt+k

∂ε1,t

=CkH1

Use instrument zt that is only correlated with ε1,t:

ηt = Hεt = H1ε1,t + H
∗
ε
∗
t

E (ηtzt) = Σηz = HE (εtzt) = H1E
(
ε1,tzt

)
This recovers H1 up to a scale factor. Set H1,1 = 1
and done.

Hj,1 =
E
(
ηj,1zt

)
E
(
η1,1zt

) (1)

6.5.2 iid shocks
Let εj,t be iid over t and independent over j. If the

distribution is not Gaussian, identification is possible.

Look for H−1 that generates iid variables in εt.
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7 Discrete Choice Models
7.1 Linear Probability Model

V
[
εi | xi

]
= P

(
yi = 1 | xi

)
− P

(
yi = 1 | xi

)2
7.2 Nonlinear Approaches

P
(
yi = 1 | xi

)
= F

(
x
′
iβ
)

F (η) = Φ(η) (Probit)

F (η) =
exp(η)

1 + exp(η)
(Logit)

7.2.1 MLE

L =
∏
i

F
(
x
′
iβ
)yi (1 − F

(
x
′
iβ
))1−yi

lnL =
∑

yi lnF
(
x
′
iβ
)

+
(
1 − yi

)
ln
(
1 − F

(
x
′
iβ
))

7.3 Marginal Effects

∂P
(
yi = 1 | xi

)
∂xiℓ

= ϕ
(
x
′
iβ
)
βℓ (Probit)

∂P
(
yi = 1 | xi

)
∂xiℓ

=
exp

(
x′
iβ
)

(
1 + exp

(
x′
i
β
))2 βℓ (Logit)

8 Non-Linear Least Squares

yi = f
(
xi, β

)
+ εi with E

[
εi | xi

]
= 0

Sn(b) =
n∑

i=1

(
yi − f

(
xi, b

))2
8.1 Asymptotic Distribution

√
n(β̂ − β)

d−→ N
(
0, A

−1
BA

−1
)

A = E

[(
∂f

(
xi, β

)
∂β

)(
∂f

(
xi, β

)
∂β

)′]

B = E

[
ε
2
i

(
∂f

(
xi, β

)
∂β

)(
∂f

(
xi, β

)
∂β

)′]

= E

[
E
[
ε
2
i | xi

] ( ∂f
(
xi, β

)
∂β

)(
∂f

(
xi, β

)
∂β

)′]
9 Quantile Regression

yi = x
′
iβ + εi with P

(
εi ≤ 0 | xi

)
= α

ρα(η) =

{
−(1 − α)η if η < 0

αη if η ≥ 0

β̂ = arg min
b

1

n

n∑
i=1

ρα

(
yi − x

′
ib
)

= arg min
b

n∑
i=1

ρα

(
yi − x

′
ib
)

√
n(β̂ − β)

d−→ N
(
0, α(1 − α)Γ

−1
V Γ

−1
)

V = E
[
xix

′
i

]
; Γ = E

[
fε|x(0)xix

′
i

]
9.1 Quantile IV

yi = x
′
iβ + ui, P

(
ui ≤ 0 | zi

)
= α

E
[
(1 − α)1

{
yi ≤ x

′
iβ
}

− α1
{
yi ≥ x

′
iβ
}

| zi

]
= 0

E
[(

(1 − α)1
{
yi ≤ x

′
iβ
}

− α1
{
yi ≥ x

′
iβ
})

g
(
zi
)]

= 0

This is GMM with discontinuous objective function.
Note, that if we knew β, one could try to find γ as the
quantile regression estimator:

yi − x
′
iβ = z

′
iγ + ui, P

(
ui ≤ 0 | zi

)
= α

β̂ = arg min
b

γ̂(b)
′
Wγ̂(b)

10 Extremum Estimators

θ̂ = arg max
θ∈Θ

Qn(θ) = arg max
θ∈Θ

n
−1

Qn(θ)

Qn(θ) =
n∑

i=1

q
(
zi, θ

)
; Q(θ) = E

[
q
(
zi, θ

)]

0 = Q
′
n(θ̂) =

n∑
i=1

q
′ (

zi, θ̂
)

(FOC)

Using a Taylor approximation (where θ̃ lies between

θ0 and θ̂), one can show that:

√
n
(
θ̂ − θ0

)
= −

 1

n

n∑
i=1

q
′′ (

zi, θ̃
)−1

·

1
√

n

n∑
i=1

q
′ (

zi, θ0
)

√
n
(
θ̂ − θ0

)
d−→N

(
0, A

−1
V
[
q
′ (

zi, θ0
)]

A
−1

)
A =E

[
q
′′ (

zi, θ0
)]

10.0.1 MLE

√
n
(
θ̂MLE − θ0

)
d−→ N

(
0, A

−1
V
[
q
′ (

zi, θ0
)]

A
−1

)
A = E

[
q
′′ (

zi, θ0
)]

q
(
zi, θ

)
= log

(
f
(
zi, θ

))
q
′ (

zi, θ
)
=

∂ log
(
f
(
zi, θ

))
∂θ

q
′′ (

zi, θ
)
=

∂2 log
(
f
(
zi, θ

))
∂θ∂θ′

If correctly specified:

−E

 ∂2 log
(
f
(
zi,θ

))
∂θ∂θ′

 = V

[
∂ log

(
f
(
zi, θ

))
∂θ

]
= I

√
n
(
θ̂MLE − θ0

)
d−→ N

(
0,I−1

)
10.0.2 Clustering

Qn(θ) =
n∑

i=1

Ti∑
t=1

q
(
zit, θ

)

0 = Q
′
n(θ̂) =

n∑
i=1

Ti∑
t=1

q
′ (

zit, θ̂
)

√
n
(
θ̂ − θ0

)
d−→ N (0, ABA)

A = E

 Ti∑
t=1

q
′′ (

zit, θ0
)

−1

B = V


 Ti∑

t=1

q
′ (

zit, θ0
)


11 Generalized MoM (GMM)

0 = E
[
f
(
zi, θ0

)]
θ̂ = arg min

θ

 1

n

n∑
i=1

f
(
zi, θ

)′
Wn

 1

n

n∑
i=1

f
(
zi, θ

)
11.0.1 Asymptotics

√
n
(
θ̂ − θ0

)
d−→ N(0,Σ)

Σ = A
−1

B
′
W0SW0BA

−1

A = E

[
∂f

(
zi, θ0

)
∂θ

]′
W0E

[
∂f

(
zi, θ0

)
∂θ

]

B = E

[
∂f

(
zi, θ0

)
∂θ

]
S = V

[
f
(
zi, θ0

)]
if W0 = S

−1
efficient GMM

√
n
(
θ̂ − θ0

)
d−→ N

(
0,
(
G

′
S
−1

G
)−1

)

G = E

[
∂f

(
zi, θ0

)
∂θ

]
11.0.2 MoM (just identified)

√
n
(
θ̂ − θ0

)
d−→ N

(
0, A

−1
S(A

′
)
−1

)
A = E

[
∂f

(
zi, θ0

)
∂θ

]

12 Sequential Estimators

0 =
′′∑

i=1

q
(
xi, θ̂1

)
; 0 =

n∑
i=1

r
(
xi, θ̂1, θ̂2

)

f
(
xi, θ

)
=

(
q
(
xi, θ1

)
r
(
xi, θ1, θ2

) )
GMM

Q1 = E

 ∂q (θ10, θ20)

∂θ′1


R1 = E

 ∂r (θ10, θ20)

∂θ′1

 : R2 = E

 ∂r (θ10, θ20)

∂θ′2


√

n

((
θ̂1
θ̂2

)
−
(

θ1
θ2

))

d−→ N

(
0,

(
Q

−1
1 V11Q

−1
1 mess

mess mess

))
√

n
(
θ̂2 − θ2

)
d−→ N

(
0, R

−1
2 V22R

−1
2

)
if R1 = 0

13 Treatment Effects and Selection Models
13.1 Treatment Heterogeneity
If effect only varies with observable covariates, let
ε1 = ε0 = ε. If the effect is even common, addition-

ally use X′β0 = α + X′β1.

Y0 = X
′
β0 + ε0

Y1 = X
′
β1 + ε1

Y = X
′
β0 + D

(
X

′
(β1 − β0) + ε1 − ε0

)
+ ε0

TE = Y1 − Y0 = X
′
(β1 − β0) + ε1 − ε0

Unobservable. Focus on average instead.
13.2 Parameters of Interest

E [TE] or E [TE | X] (ATE)

E [TE | D = 1] or E [TE | D = 1, X] (ATET)
13.2.1 Bounds

Assume Yk for k ∈ {0, 1} is bounded, so yℓ ≤ Yk ≤
yu. Then yℓ ≤ E

[
Yk | D = 0

]
≤ yu. Then we can

find E [TE] = E [Y1 − Y0] by using

Pr(D = k)E
[
Yk | D = k

]
+ (1 − Pr(D = k))y

ℓ

≤E
[
Yk
]

≤Pr(D = k)E
[
Yk | D = k

]
+ (1 − Pr(D = k))y

u

13.2.2 Matching
Assume that conditional on X, (Y1, Y0) is independent
of D, and that there are actually observations to match
across treatment groups 1 > Pr(D = 1 | X) > 0.
ATE

E [Y1 − Y0] =E [E [Y1 − Y0 | X]] (ATE)

=E [E [Y1 | X,D = 1]

−E [Y0 | X,D = 0]]
ATET

• construct average for each X, and D
• difference each average across Ds
• Average the differences. Weight by appearance

in D = 1
13.2.3 Propensity Score Matching
If (Y1, Y0) is independent of D conditional on X,
then (Y1, Y0) is independent of D conditional on
P (X) = Pr(D = 1 | X). Thus, if it is valid to match
on X, then one can alternatively match on P (X). Very
difficult to justify from an economic perspective.
13.2.4 Differences-in-Differences Estimator

β̂
diff-in-diff
1 =

((
Ȳ

treat,after − Ȳ
treat,before

)
−
(
Ȳ

control,after − Ȳ
control,before

))
13.3 Randomized Experiments with Imperfect

Compliance
Let Z be 1 if assigned to treatment, and 0 if assigned
to control. Also let D1 be the treatment status if
Z = 1, and D0 the treatment status if Z = 0. Also,
D1, D0 are binary. Must assume

• Independence: (Y0, Y1, D0, D1) is indepen-
dent of Z (random assignment)

• First Stage: 0 < P (Z = 1) < 1 and
P (D1 = 1) ̸= P (D0 = 1)

• Monotonicity: D1 ≥ D0 −→ (no defiers)

Then we have for the compliers (Local average TE =
LATE):

αLATE = E [Y1 − Y0 | D1 > D0]

=
E[Y | Z = 1] − E[Y | Z = 0]

E[D | Z = 1] − E[D | Z = 0]
=

cov(Y, Z)

cov(D,Z)
Effectively, Z acts as an instrument for the treatment,

and one can run 2SLS of Y on a constant and D, using
Z as instrument (one may include other controls X).
13.3.1 Parameter Heterogeneity
Every individual has own paremeter.

yi = x
′
iβi + εi E

[
xiεi

]
= 0

β̂
p

−→ E
[
βi
]

Assume β1i and δ1i are distributed independently of(
ui, vi, zi

)
. And E

[
ui | zi

]
= 0, E

[
vi | zi

]
= 0, and

E
[
δ1i

]
̸= 0:

β̂
2SLS
1

p
−→

cov
(
yi, zi

)
cov

(
xizi

) =
E
[
δ1iβ1i

]
E
[
δ1i

]
2SLS estimates the causal effect for individuals for
whom Zi is most influential (those with large δ1i ).
13.4 Regression Discontinuity

P (D = 1 | X = x) =

{
0 for x < c

1 for x ≥ c

E[Y | X = x] =

{
E [Y0 | X = x] for x < c

E [Y1 | X = x] for x ≥ c

lim
x↘c

E[Y | X = x] − lim
x↗c

E[Y | X = x]

= E [Y1 − Y0 | X = c]

14 Nonparametrics
14.1 Kernel Density Estimator

f̂(x) =
1

nhn

n∑
i=1

K

(
x − xi

hn

)

E[f̂(x)] = f(x) +
1

2
h
2
f
′′
(x)

∫
v
2
K(v)dv + O

(
h
4
)

V [f̂(x)] =
1

nh
f(x)

∫
K(v)

2
dv + O

(
n
−1

)
14.1.1 Epanechnikov kernel

Kopt (t) =
3

4 · 51/2

(
1 −

1

5
t
2
)

1
(
t
2 ≤ 5

)
15 Machine Learning
15.1 Trees
Highly intuitive, easy to explain, highly flexible BUT
hard to interpret, discrete step function (even for con-
tinuous data), and might need a lot of leaves.
Uses regression sample split algorithm:

Yi = µ11
{
Xdi ≤ γ

}
+ µ21

{
Xdi > γ

}
+ εi

E
[
εi | Xi

]
= 0

• The parameters are d, γ, µ1, and µ2
• d and γ are estimated by grid search
• The estimates produce a sample split
• need Nmin for stopping criteria

15.2 Bagging (Bootstrap Aggregating)
You generate a large number B of bootstrap samples.
Estimate your regression model on each bootstrap sam-
ple. The average of the bootstrap estimates is the
bagging estimator.
15.3 Random Forests
Random forests are a modification of bagged regres-
sion trees. The modification is to reduce estimation
variance.
1. Draw a nonparametric bootstrap sample.
2. Grow a regression tree on the bootstrap sample us-
ing m variables chose at random from the p regressors

m̂rf (x) = B
−1

B∑
b=1

m̂b(x)

15.4 Elastic Net (Ridge / Lasso)

yi =
k∑

j=1

xijβj + εi (many regressors)

For Lasso, set α = 0. For Ridge, set α = 1. Get the
parameters via m-fold cross validation.

min
bj

n∑
i=1

yi −
k∑

j=1

xijβj

2

+ λ

(1 − α)
k∑

j=1

∣∣∣bj ∣∣∣ + α
k∑

j=1

b
2
j


15.5 Double Selection Lasso (IV)
Use Lasso to estimate

Di = x
′
iγ + vi

Let x1 be the selected variables.
Use Lasso to estimate

Yi = x
′
iδ + vi

Let x2 be the selected variables.

Let x̃ = x1 ∪ x2 and regress (OLS)

yi = Diθ + x̃
′
iβ + εi

to get the estimator of θ.
16 Notes

16.1 Binomial

p(k) =

(n
k

)
p
k
(1 − p)

n−k

E[X] = np

V ar(X) = np(1 − p)

M(t) = (1 − p + pe
t
)
n

Note: if n = 1, it’s a
Bernoulli distribution.

16.2 Poisson

p(k) =
λke−λ

k!

E[X] = λ

V ar(X) = λ

M(t) = e
λ(et−1)

16.3 Uniform

f(x) =
1

b − a

E[X] =
1

2
(a + b)

V ar(X) =
1

12
(b − a)

2

M(t) =
ebt − eat

(b − a)t

16.4 Univariate Normal

f(x) =
1

σ
√

2π
e
− 1

2σ2 (x−µ)2

E[X] = µ

V ar(X) = σ
2

M(t) = e
µt

e
σ2t2

2

χ2 Distribution

U :=
n∑

i=1

Z
2
i

U ∼ χ
2
n

E[U] = n, ∀n ≥ 1

V ar(U) = 2n, ∀n ≥ 1

t Distribution

T :=
Z√
U/n

T ∼ tn

E[T ] = 0, ∀n ≥ 2

V ar(T ) =
n

n − 2
, ∀n ≥ 3

F Distribution

W :=
U/m

V/n

W ∼ Fm,n

E[W ] =
n

n − 2
∀n ≥ 3

V ar(W ) =
2n2(m + n − 2)

m(n − 2)2(n − 4)
∀n ≥ 5

Marginal Distribution

DRV CRV

px(xi) =
∑
j

p(xi, yj) fx(x) =
∞∫

−∞
f(x, y)dy

Conditional Distribution

DRV CRV

P (X = xi|Y = yj) =
P (X=xi,Y =yj)

P (Y =yj)
=

PXY (xi,yj)

PY (yj)
fX|Y (x|y) =

fXY (x,y)
fY (y)

Theorems
A Linear functions of X are normally distributed

Y = η + BX ∼ Nk

(
η + Bµ,BΣB′

)
B X has density given by

fX (x) = 1

(2π)p/2|Σ|1/2
exp

{
− 1

2
(x − µ)′Σ−1(x − µ)

}
C Independent normally distributed RVs are jointly normal.

X = (X′
1, X′

2)′ ∼ Np+q (µ,Σ)

µ =

(
µ1
µ2

)
and Σ =

(
Σ1 0
0 Σ2

)
D Conditional normal distribution

(X1|X2 = x2) ∼ N
(
µ1 + Σ12Σ

−1
22 (x2 − µ2) ,Σ11 − Σ12Σ

−1
22 Σ21

)
E Suppose X2 ∼ N (µ2,Σ22) and X1|X2 = x2 ∼ N (A + Bx2,Ω).

Then X = (X′
1, X′

2)′ has a multivariate normal distribution(
X1
X2

)
∼ N

((
A + Bµ2

µ2

)
,

(
BΣ22B′ + Ω BΣ22

Σ22B′ Σ22

))
F Sums of independent normals

X1 + X2 ∼ N (µ1 + µ2,Σ1 + Σ2)

Let X ∼ Np(µ,Σ). Also let X = (X′
1, X′

2)′, µ =

(µ′
1, µ′

2)′, and Σ =

(
Σ11 Σ12
Σ21 Σ22

)
.

G The marginal distribution of X1 is Nk(µ1,Σ11)

H For a normal, a zero correlation implies independence.

I Characterizing independence of linear combinations of
normal variables.
If X ∼ Np(µ,Σ), B is a p × k matrix, and

C is a p × m matrix, then B′X and C′X
are independent iff B′ΣC = 0.

Note that B′X and C′X are jointly normal and

B′ΣC is the covariance.

Quadratics: Assume A is symmetric, then Y ′AY is a
quadratic form.

J If X ∼ Np(µ,Σ) where Σ has rank p,

then (X − µ)′Σ−1(X − µ) ∼ χ2
p.

K Let M denote an idempotent p × p matrix with rank k,

then Z′MZ ∼ χ2
k

M = PΛP ′, where Λ contains the eigenvalues of M
on the diagonal,
and the rows of P are the orthonormal eigenvectors.

Then M = [P1 P2]

[
Ik 0
0 0

] [
P ′
1

P ′
2

]
= P1P ′

1

Thus, P ′
1Z ∼ N(0, P ′

1P1), where P ′
1P1 = Ik

L Let X = PZ, and Q = Z′AZ, where PA = 0,
then X and Q are independent.

M Let Q1 = Z′A1Z, and Q2 = Z′A2Z, where A1A2 = 0.
Then Q1 and Q2 are independent.
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