1 Probability Concepts
P(AUB)=P(A)+ P(B) — P(AN B)

P(AN B) — B(BIA) P(A)

P(B) P(B)
P(B|A)P(A)

P(B|A)P(A) + P(B|AC)P(AC)

2 Random Variables

Fx(z) =P(X < ) and fx (z) = P(X = z;)

2.1 More than one variable

Fx,y(z,y) =P(X <, Y < y)

DRV: Px y(z;,y;) = P(X = a3, Y = y;)

CRV: P((X,Y) € A) :}{ff(z,y)dz dy

P(A|B) =

Marginal Distribution
DRV CRV
oo
pe(zq) = X p(x;, ;) fa(x) = [ f(z,y)dy
J — oo

Conditional Distribution

by , ; ) CRv
P(X=2;,Y= Pxy (z;, (=,
PO =y ly = ) = Do) - X ‘ Fxpy Gl = D30
Law of total probability
DRV CRV
Px(ei) = £ Pxjy @ilup) Py () | fx (i) = ] ixjy (@il fy (u)dy
i —oo
2.2 Expectations
DRV CRV
o
E[X] = X z;p(=;) EX] = [ zf(x)d=z
@ —oo
)
E[g(X)] =X g(@;)p(=;) | Elg(X)] = [ g(=)f(2)de
@ —oco

oo
E[X] = / 1 — F(X)dz for any nonnegative RV

Conditional Expectation
DRV CRV
EIXIY = y) = Derx |y (2ly) EIX|Y =] = [afx)y («ly)de
EGCOIY = 9] = S o@rx |y (@) | Ela(OIY = 3] = [ 9@)f x|y (elp)dz
Law of Iterated Expectations
Ey Y] =Ex[Ey x (YV[X = 2)]

2.3 Transformation of RVs
Let Y = g(X)
= —1 d _q
fy(w) =Ffx(@ ") |—g "l
dy
Fy ) =fx (g~ @) - 1]
2.4 Moments
M(t) = B(e?X)  mgf
M) (1) = /zjg“”fx(x)dz
M@ (0) = B(x7)
2.5 (Co)variance and Correlation
DRV CRV
Var(X) = S(z; — n)2p(e;) Var(z) = [ (¢ — p)2f(x)da
B —o

Var(X) = E[(X — E[X])?] = E[X?] - (B[X])?
Cov(X, X) = E[(X — px)(Y — py)]
E[XY] — E[X]E[Y]

E[XY] = / / zyf(x,y) dz dy

7 7@ —pux)(y = py)

Cov(X,Y) =
—_—00 — o0
- f(z,y) do dy
Cov(X,Y)

VVar(X)Var(Y)

8 Selected Probability Distributions

3.1 Binomial 32 Poisson
n _
p(k) = ( )pk(l -k
k p(k) = '
E[X] = np k!
Var(X) = np(1 — p) B[X] = x
. Var(X) = x
M(t) = (1 —p+pe)™ ;
Note: if n = 1, it's a M) = AeT=1)

3.3 Uniform

3.4 Univariate Normal
f(=) : L 9
x) = 1 - (z—p)
b—a flz) = ——e 202
1 oV2m
E[X]:g(a+b) E[X]=npn
1 SVar(X) = o2
Var(X) = — (b — a)
12 . 5242
oMty T3
Gbt _ at M(t) =ef"e 2
M(t) = ——
(b—a)t
2 Distribution t Distribution
o o Ti= ——
U= > z; TU/n
1
T ~ tp
U~ x2
Xn E[T] =0,Vn > 2
E[U] =n,Vn > 1
Var(T) = ,Vn >3
Var(U) = 2n,Yn > 1 n—2 =
F Distribution
m
B V/n
W ~ Fmn
n
B[W] = Yn >3
n—2
2n2(7n +n—2)
Var(W) = ———— Vn > 5

m(n — 2)2(n — 4)
3.5 Multivariate Normal
Notes on matrix algebra:Let £ be a positive definite
matrix. Then it can be factored as ¥ = AA". A =
»1/2 and then x=1 = (a/)=1a—1 |a-1 = a1
and |A| = |A/].
1 —gkyE—w?

= oI

E[X]
Var(X) =o
it o242
M(t) = eMle 2

Theorems
A inear functions of X are normally distributed

Y = nt BX ~ N (n-+ Bu, BEB')
B X has density given by
B T S——— Y G R C
Ix(®) = T p{-%@-w (== m}
(¢} Tndependent normally distributed RVs are jointly normal.
X = (X1, XB) ~ Npyq(u:3)
—(m ana w=( Z1 0 )
" 0 by
D Conditional normal distribution

’ —1 —1
(X11X3 = 23) ~ N (i1 + D125 (23 — p2) , B11 — D122, 1)
E | Suppose X3 ~ N (ug, £g2) and X1 [Xg = ¢ ~ N (A + Bag, ).

Then X = (X{, X4)’ has a multivariate normal distribution
( X )~N(( A+ Bug )( BYyyB' 10 Bz ))
X2 ) T B Z22
F | Sums of independent normals
X1+ Xg ~ N (i1 + 02,51 + %)

Let X ~ Np(p,S). Also let X = (X|,x5), u =

A 11 12
(ny,pny)', and © = ( .
172 T21  Zog
G The marginal distribution of X; is Ny (1,%11)
H For a normal, a zero correlation implies independence.
T Characterizing independence of linear combinations of

normal variables.
If X ~ Np(u, £), B is a p X k matrix, and

C is a p X m matrix, then BrX and C’X

are independent iff B/SC = 0.

Note that B/ X and C’X are jointly normal and
B’SC is the covariance.

Quadratics: Assume A is symmetric, then Y/AY is a
quadratic form.

J 1f X ~ Np(p, ) where ¥ has rank p,
then (X — p)/S=1(X = p) ~ X;%'
K Tet M denote an idempotent p X p matrix with rank k,

then 2/ MZ ~ Xi

M = PAP’, where A contains the eigenvalues of M
on the diagonal,

and the rows of P are the orthonormal eigenvectors.

I 0 P{
ThenM:[r’le][ r;c 0][P2:|:P1P{
Thus, P{Z ~ N(0, P{ P1), where P{P) = I},
L Let X = PZ, and Q = Z' AZ, where PA = 0,

then X and Q are independent.
M | Let Q) = Z'A1Z, and Qg = Z' A3 Z, where A1 Ay = 0.
Then Q; and Qo are indépendent.

4 Some Useful Inequalities

4.1 Jensen’s Inequality
g(x) concave g(x) convex
Elg(x)] < g(E[X]) Elg(x)] > g(E[X])
4.2 Chebyshev’s and Markov’s Inequality

If X is a random Variable with mean p and variance
0'2, then

02
POX —pl > e) < = ve >0
2
E(|X|P)
P(|X|>e) < —— Ve > 0 (Markov)
y
5 Large Sample Theory

Xp 25 X if P{w|limp—oo Xn(w) = X(w)} =1
P . . —

Xn =5 X if Ve > 0, lim P(|Xn — X| >¢) =0
ms o . ) 2] _

Xp M5 X if nli)moo]E[(Xn - X) } =0

Xpn % X if limnoo Fx,, (2) = Fx ()

Relationship between convergences

o If X, “5% X then X, 2 X
o If Xy, ™% X then Xy 25 X
o If Xp 25 X then Xp -% X

Slutsky’s TheoremlIf

Xn 25 x e RF,
Yn L5 A € RrP,
Zn £+ B € RPXK,

Then, Yy + ZnXn 25 A+ BX
5.1 Law of Large Numbers

where X can be random
where A is fixed

where B is fixed

Ca 2
The sample meanBy LLN: X & N (p, Z-
weak LLNLet X7, X2,... be a sequence of random
variables with E(X;) = u, and Var(X;) = o2, and
Cov(X;, Xj) = 0Vi # j. Then one can use Chebyshev
to show that:

x 2 "
strong LLNLet X1, Xo,... be i.i.d. with E(X;) =
1 < oo, then without saying anything about 279 mo-
ments:

o a.s.
X ==

5.2 Central Limit Theorem

Let Y7, Yy, ... be a sequence of k-dimensional i.i.d.

random vectors with E[Y;] = uy and Var(Y;) = =.

1
VST 2 (Y = w) L N (0, 1)

1
Jim P(VAST2(Yn —p) <o) = (), ¥y €A
Delta MethodLet Uy denote a sequence of scalar ran-
dom variables, and let Vi, = v/n(Up) — a, where a is
a constant. Let g(-) be a continuously differentiable

function. Suppose Vj, Pov o~ N(p, 02). Then

dg(a dg(a)]?2
Vi (g (Un) = g(a)) = LVNN(Q[ g( >} 62)
da da

Vn(g (Un) — g(a))

L@ N (0) {dg(a)] 5 [dg(a)} )
da da da

6 Estimators
e An estimator is unbiased, if E() = 6. Where

Bias is defined as Bias(f) = E(6) — 6
say L(6,0) = (6 — 0)2 =
This is not the same as ex-

e Loss Function ,
quadratic loss .
pected quadratic loss, which is MSE:

B(L(6,0) = B ((6 — 9)2) = mse(6)

= Var(8) + [Bias(6)]?
e Conclusion: for unbiased estimator mse(§) =
Var(6)

e An estimator is consistent, if 6 3 6

6.1 The Likelihood Function
L(6,Y) = f(Y]0)
9ln f(y]0) 1 of(yle)
S(0,y) = =
20 flyle) o8
of(ylo)
B[S(6,Y)] :/Tdy = [s@.wrwloay =o
8s(0,Y
1(0) = —F [7( i )] = E[s(0,v)?]
26
= Var[S(0,Y)]
The Cramer-Rao inequality and unbiased estima-
tors

Var(d) > =1(0)" 1

Var(S(0,Y))

Maximum Likelihood Estimators
n
meax Ly (0) = méix H F(Y;10)
i=1

Omie

100)"? Vit (Omie — 00)

R
4 N, 1)
= a —1 —1
Omie ~ N (90»" I (60) )
6.2 Method of Moment Estimators
Assume pu = h(6g), where p is I X 1, 6 is k X 1 with
k < 1. Then Omm solves

min T (0) = min(¥ — r(8)) (Y — h(6))

Omm 5 69
eAmm i~ N(90, V)
dh (0 ’ dh(0
N e [l G2 IS L GOl RS
a6/ a6’

o Oh (80)]" [0k (60)
26! 26!
7 Sufficient Statistics

Pdf of Y as fy (y|6), the pdf of S as fg(s|6) and the
conditional pdf of Y given S = s as fy|g(yls, 0) =

fy‘s(y|5)> that is the conditional density of Y given
S does not depend on 6.
Factorization Theorem N

0(Y) = arg max f(Y|6) = arg méix g(S16) = 6(S)
Rao-Blackwell TheoremY is RV with mean p and
variance a%,. X is another RV. Let p(x) = E[Y|X = z].

Then Var(u(z)) < o3
E(p(X)) =n
Y = u(X) + (Y = u(X))
0% = Var(u(X)) + Var(¥ — u(X))
Var(u(X)) < 0%

Use this result in estimations: Suppose 6(Y) is an
unbiased estimator of 6, so that 6 = JE[é(Y_)], and let
S be a sufficient statistic for 6. Then E[6(S)] is an
unbiased estimator of 6 but the variance is lower by
Rao-Blackwell.

0 = Bl6(Y)] = BE[6(Y)|S]] = E[6(S)]
8 Hypothesis Tests

8.1 Wald Tests
Hg :0=0q Hg :0 # 0
e=(6-100) 21 (6-00)
€~ x? under the null

Therefore, we accept Hq, if £ < cv, and reject H if
£ > cv. cv solves P(§ > cv |6 = ) = a.

Power = P(§ > cv|Hg is true) = P(§& > cv [0 # 6g).
Because Hg has many values for 0, the power differs
for each value. But assuming that the distribution of

6 was based on CLT (va(6 — 0) -% N(0, V). Then
Q= 7L71V, and our test statistic becomes

. - 5

e=n (s o0) v (s 00)

If the mean of 6 is equal to a fixed constant (that is
not 6g), then £ — oo, and P(§ > cv) — 1. The test
has therefore power = 1 for any fixed value of 6 under
the alternative. When power — 1, a test is said to be
consistent.

Hypotheses involving linear functions of 6

Hg: RO =rg where R is a j X k matrix with rank j
Hg : RO # rg where R is a j X k matrix with rank j

R6 ~ N (R0, RQR')
(ro —ro)’ (RQR')_l (ro — 7o)

under Hg

3

£~x]2-

>s involving nonlinear functions of 6
Hg : R(0) =g
Hq : R(9) # g
VR(R(9) — R(6)) = N (o, HVH’) by delta method
OR(0)
To0!

R(8) & N(R(9), %) where @ = n " 'HVH

¢ = (RO) - ro)’ @™ (R(O) - 7o)
8.2 Neyman-Pearson Tests
We choose the probability of a type 1 error (accept
Hg when HQ) beforehand (size), and then minimize
the probability of making a type 2 error (maximize
power).
Neyman-Pearson 1aChoose critical
based on the LR to maximize power.

Ler

region

LR(Y) = L(y)
Lo(Y)
W = {y|LR(y) > cv}

P[LR(Y) > cv|Y ~ Fp] = a to determine cv

We reject Hy : p = pq, if LR is large when Hg

w > pg. We reject Hg : p = pg, if LR is small when
Hg : p < pg. Since the LR critical regions are the
same for all of the simple hypotheses making up Hg
and each is most powerful, then the LR procedure is
said to be Uniformly Most Powerful (UMP) for Hq vs.
Hg.
8.3 Maximizing Weighted Average Power

Hy : 6 = 0g simple null hypothesis
Hg : 0 € ©g composite alternative hypothesis
w(6) weight function for values of 6 € O4

f(y|6) density of y, conditional on a value of 0

/ f(y|6)dy power of the test for a particular 6
w
WAP = / [/ f(y|9)dy] w(0)do
04 Uw

- /W [/@ f(yIB)w(g)de} dy
a

= /W g(y)dy

g(Y) is the density of Y under the assumption that
6 is random with density w(6). Thus, the prob-
lem is equivalent to testing with a simple alternative
Hg :y ~ g(y). Then use NP test:

9(¥)  _ Jo, F(Y10)w(9)do

[ (Y160) £ (Y100)
9 Confidence Sets

LR(Y) =

1 —1
P S 5 2
o) = {enw —o' [20] @-o < xﬁ,l,a}
n
C(Y) =0+ 219 x4/
n
10 The Bayes Approach to Estimation and In-

ference

10.1 Basic concepts and some jargon
oo (Bl) fy,0(y,8)  Fy|o(wl9)fe(8)
0|y (¢1y) = = PN
l Ffy () I fy,o(y, 0)do
Fy 6 (18) 5o (@)
f fy‘g(y\é)fe(é)dg
Likelihood X Prior
Posterior = —————
Marginal Likelihood
10.2 Bayes Estimators

méin ]EB\Y:y [L(H,06)] posterior risk

If loss is quadratic, then we know that 6 = Bgly =y (0)
minimizes the MSE, which is just the posterior mean.
10.3 Bayes Credible Sets

Poly—=y(0 € Cy)) =1-a
where the notation emphasizes that the probability is
computed using the posterior for 8|Y = y. Because
this holds for all y, we also have

PO,Y<9 €eCy)=1—«
where now the probability is computed over 6 and Y.




Hayashi 1
Assumptions
.1 Linearity
= XB+e,X is (nx k)Bis (kx 1)
2 Strict Exogeneity
E(e; | X) =
E(e;)) =E[E(e; | X)] =0
11.1.3 Full Rank
No multicollinearity. (X X’) has to be invertible.
11.1.4 Homoskedasticity

B(f1X)=02>0

E(siej \x):ofori;éj
11.1.5 Normality
=1 X ~ N (0,6%1)

€
Z | X ~ N(0,1)
o

for inference
11.2 OLS estimation

_ _1 1 -1 ,1
BOLS:(X’X) X’y:(;X’X) ;X’y)

(5|

for one regressor: B = CVOAV<7;”;) and Bg = § — B17
ar(w

M=1—-P

@:Py:X(X X)ilxly:Xb

e=My=y—Py=y—17
PX =X
MX =0

e=My=M(XB+e¢e) = Me
11.3 Finite sample properties
OLS estimator is unbiased with following variance:

Bors = (X' x) "1 x"(xp + o)
=8+ (X’X)’1 X'

Blfl=p+ (X'X) 7 X/ Ble | 2] = 5
VI3 | X =E (B - EIBNGB - EBD | X|
- (x’x)’l x'E [ss’ | X} X (X’X)’1
=2 (X/X)71
CR lower bound (achieved by MLE): #.
Two models:

Misspecification

A: y=XB+Zv+e
B: y=XB+e
OVB:A is true, B is false. Then § is biased.

B=08+ (X/X)71 X/Z'y+<X,X>71X/s
< -

Bias

Irrelevant variable:B is true, A is false. Then J is
unbiased, but inefficient.

V(B | X,2)> o2 (x’x)*1 =V(@|X)

Linear restrictions
15 ' pr P B
(Rﬁ—r) R(XX) R (R[ﬂ—'r)/p
((n = K)s2/02) /(n — k)

(E’*e* - e’e) /p
ele/(n — K)
(r2 - r*2) /p (SST* — SSR) /p

(1 - R2)/(n - K) SSR/(n — K)

p: number of regressors w/o constant

n — K: number of individuals minus number of regres-

sors with constant

last equation only for regression output useful
12.1.2 Goodness of Fit

(SSR* — SSR) /p
SSR/(n — K)

S 2
R2:%:MSS/TSS
vi — 7
Se2
—1- =% _ _1_(RSS/TSS)
> (y; — 9)2
A% Se2/(n - K)
Y (v —9)?/(n—1)
2 n—1
=1 _R?%)
1 (1 )nik

12.1.3 Wald Statistic
V(B | X) is given in outputs. Do not forget to square

SE(B).-

W= (R’Bf 7-)' [R'V(B | X)R}_l (R’E - 7-)
=n(R'B - 7‘)/ [R’A\?ar(B)er (rR'B-r)
W =a(®) [va®) V(81 xX)va®] " ad)

=na(d) [Va(p) Atar(§)va(®)] * a(h)

12
12.1

Hayashi 2
Inference

80 € By £15_pese(By)

13 Hayashi 3: IV and GMM
13.1 Assumptions IV
13.1.1 Linearity

y; = 2z;6 +e; but E[z;e;] #0
13.1.2 Ergodicity and Stationarity
(v4, 24, ©;) ergodic and stationary for LLN.
13.1.3 Exogenous Instrument

E[g;] = E [z;e;] = E [m7 (y7 — zgé)] =0
13.1.4 Identification

E [;2}] has full rank L where dim(z;) = L < K =

dim(z;)
13.2  Estimator
/=1 —1
§=Ele;2}]  Elesu] ==  ouy
—1
1o 1
T ’
= (2] L e
" noi=1
R n
V-0 = > e
1
’ ’
S=E [gigi] = [(Iifi)(zisi) ]
13.2.1 Case 1: exogenous error
Assume
Ele; | w4, 2] =0
2
B [eF | @, 25] = (@)

Then it is pretty much OLS:
SoLs = 8
VaBoLs — 8) - N(0, V)
V=E [ziz,li]_l
And for GMM estimator:

B[22 B[22

W =571 = B[]z}

—1

Vi (3 (571) = 0) v (o (.57 00) )

13.2.2 Case 2

ity

Ee; | z;] #0

Ele; | 2] =0
B2 a5, 2] = o2
OLS-estimator:

SoLs B s+ E [ziz;;}71 E [z;64]
v (boLs —8) S N, V)
V =E [ziz”71 E [ugzizﬂ E [ziz,/i]

-1 2
=B[22 B[uflz)
i = 25—y,

Efficient GMM estimator:

w=s1'=E [E?le;]

endogenous error with homoskedastic-

=3

—1

—1

v (5(571) =) (0 (a5 en) )

13.2.3 Case 3:
ticity
Assume
Ele; | 2;] #0
Ele; | z;] =0

flxq)

Blef | @ 2] =

endogenous error with heteroskedas-

Then we use the GMM estimator which also works in

the case of overidentification with W = E [

VR(E(W) — 8)

- (s;zv’vs“)*ls;ﬁ(

n
v igl
N (2;2W212)71

4, N(0,9)

11—
i@y

misi)

’
=l W - N(0,S)

Q= (2L W) 2L WSWE,, (8, WEa:) "

14 Notes
z |/ a b 11 x _
y c d Y -
14.1 Couples’ data

dz? — (b + c)wy + ay
ad — be

14.2 Normal distribution
£[x2] = w2 + o2
E [X } = HS + 3M02
£[x4] = w1 + 6u?0? + 301
o[ = o] = o2
E [X3\,4 = } =0
]EI:X4\;A. = } =304
L
D




1 Some Basic Time Series Concepts
1.1 Strict Stationarity

fyp = Fygp = Fyz =---
1.2 Covariance Stationarity

pt =E(Yy) = i Mg = A for all ¢
1.3 Martingale (Difference)
]E{Yt, | Qt—l} =

E{vi|9_1}=0
1.4 AR(p) process
1.4.1 VAR(1)

Yi1 (M)

(MDS)

t—1
Y, = @Yy +ep=2'vg+ S aley
i1=0
ALYy = (I — AjL — ... — ApLP)Yy = 4

For covariance stationarity, all eigenvalues of & are

less than one in modulus, thus ®% — 0 as t — co. OR

| A(2)| has roots outside unit circle.

1.4.2 AR(p)

AR(p) as VAR(1) by companion form:

!
Zy =2Zy_q Fer; Zy = [Yt : Yt7p+1]
1 b2 ... dp
1 0 .0
@ =
0 0 .0
ep =1leg 0 ... 0]

1.5 MA(q) are stationary

— Bgep_q; et ~ iid (0, 02)
2 N

E(Yy) =0; Var (Yy) =0 (14 > 63

=1

Y =eg — ...

q—k

cov (YiYi_y) = —Ok + > 06044
J=1

I
q

for k < g

cov (YiYy_p) =0 for k| > q
1.5.1 Invertibility restriction
MA(1): 6] 1 or roots of 6(z) = (1 — 62)
greater 1 in modulus. MA(q): roots of 6(z) =

_ quq) greater 1 in modulus.

A

(1—912—9222—,”
Need the restriction for identification as_we cannot be
sure if we recover 0 or 6 = 01 with &
1.6 Autocovariance generating functions

=0

A(z) =

A(z) = 029(z)9 (z
ARMA (p,q) models

*1) for MA(q)
1.7

¢(L)Yy = 0(L)ey

9 (¢ —0)2
ro =t (M STy

_9)24h
™ 1 (6 >¢)

2 (e -0yl 4
1— ¢2
For the ACGF transform into MA(q) representation:

A=) = o2e(z)e (=71)
o26(2) " Lo(2)e (2—1)*1 o (=71

2 The Likelihood Function for Time Series
£ (vir) =f (Yo | Yir—1) f (Yir—1)
=f (YT I Yl:T—l) f(YT—l I Y1:T—2)'
f (YI:T—2)

T
H (Yt I Yl:t—l) f (Y1)

8 The Kalman Filter
8.1 The Basic Linear Model

yr = A'wy + H €4 + wy ;E(wtwé):R

£t = F& 1 + vy ;ﬂf(vtvé):Q

3.2 Signal extraction and the Kalman Filter
t
vi:e = {vili=1
St =E(&e | v1:k)

Py = var (& | y1:x)

[ a0 ][ & S

Kalman Filter equations

2

Etje—1 = F&e1jt—1 (k1)
Yeje—1 = A'we + H'gy g (n2)
Pyp—1 = FP_qjp 1 F +Q (211)

ht = H'Py,_H+ R+ H'G' + GH (S32)
(Z12257)

nt =yt — Ygp—1 (22 — K2)

Ky = (Pyy_qH+ Ghy

—1
Ee)t = Sejt—1 + Kine (I"l + 212355 (22 — uz))
’
Pyp = Pyp—1 — KeH (Pyy_q +G)

(211 - 21222}1221)

If & is covariance stationary, then §g)g = E(§g) = 0,

Pgy|g = Var (§)-

3.3 Hamilton

yt = cp + Bpwt +ep e ep,e ~ N (0, 0)

€it—1 =P (st—l =i Qt—l;e)

P sy =3 — i) =p;,; = | PoO Pm]
(St Ilse l) tI [ P10 P11
njt = f(yt | st = jﬁyt'_l;e)
2
1 (yt —cj — By wt)
= exp |[—-——mF+———— - —
Voxs 20]2.

3.4 Likelihood function
Gaussian density for yy.p

f(v1:1) {0}

T
=11 f(’yt | y1:t—1) P Y1:0 =
t=1

f(yt\y1 1): S nexp(fin'h_lnt)
. N 2"t

Then the likelihood is:

3 1 nT [ T “1/2
f () = (m) (tl;[1 [htl )
1 T
oo (-5 & bini

Nt =Yt~ Ye—1
This is the same expression as in the last section with
— 52 —
ht = oy_, and Yijt—1 = Ht—1-
4 The Linear model with Serially Correlated

Data
4.1 Asymptotics for serially correlated processes
1.1.1 Ergodicity

A process is ergodic if its elements are asymptotically
independent.

Suppose {z¢} is stationary and ergodic with E (z¢) =
. Then -1 ZiTzl zt 23 .

If z; is stationary and ergodic, then so is ¢ = f (2¢)
for arbltrary function f.

1.1. CLT for martingale difference sequences (MDS)

Let {gt} be a (possibly vector-valued) mds that is

stationary and ergodic with E (_qt_qt) =gg.

1 T
VTg = D" 9t = N (0,%gg)

7

Linear and Serially Correlated Regressors

4.2

!’
yg = xy B+ ey

1.2.1 sumptions
(2) {yt, ¢} is a stationary and ergodic process
(3) E(egxy) = 0, or letting g¢ = ¢y then E (g¢) =0
(4) E (a‘ta‘é) = Sgg which is non-singular
’
E (gtgt) =44

If in addition to (2)-(5), E [(zf izt,j)2} is finite for

(5) {g¢} is a mds with

= &tz = (yt — @¢B)wy, and

all 4 and J, and let g¢
Sgg = & 397 = & Y éfaya}. Then
P
Sgﬁ = Zgg
4.2.2 OLS
BLs
VT(B - 8) &N (o DI PE SP >y )
= ’ o AN =
gw =T(RE - (RVZR ) (RB — 1)
2w
EW = Xm = Fm,co
m
AR(1) exampleiyy = ¢pxy_q + 4 and VT ($ — ¢) =
N (0,025 71). Th £ AR(1): Spq = —22
(,a z:c) en use from (1): zw = T2y
~ 1
¢5N(¢,7(1—¢2))
T
4.3 Let g; not be a MDS
T
— > 9t = N(0,Q)
t=1
T—1 . T—1
o= X x-o Za(h+aeg)
j=7T+1 i=1
o0
-
j=—o0
Q=A(z=1)
4.3.1 (;Ls With Serially Correlated Errors
Let — Zt—1 gt = N(0,Q). Then OLS gives
VI(6 -8 = N (O’EXXQZXX)
4.4 HAC and HAR inference

Let v[ = SXXQSXX and €y = T(B — B)’ VB g

8). 1t @ 25 Q, then V[; 2, Vg, and gy = Xk’
1.4.1 Estimators for Q
With finite sample, impossible to consistently estimate
Q for all possible sequences {)\j}. Sometimes it is:
Suppose /\ljl = 0 for |j| > q (so g¢ follows an MA(q)
process). Only estimate the variance and first ¢ auto-
covariances. These are consistent.
4.4.2 HAC Estimators for Q

. ~a.gTrunc k S wieh X, —
Truncated:§2 Ej:—k Aj with A =

—15T—j
T™5 2=y 9t9t+j

Weighted Truncated:{(w) = Z;tik w;%; where
w; are weights.
k k41— 1j
. R gl
oW _ » wil; i w = ————
Pt k41

These HAC ebtlmators yield test statistics with good
size/power properties in cases when there is limited
autocorrelation.

4.5 OLS and HAC vs. GLS

OLS is perfect if Var(u | X) = A = o21I.
A # 021, use

When

pELS = (X’A71X)71 x/A7ly

If A is unknown, use feasible GLS:
BFGLS _ (X/A71X)71 x'A" 1y

A = A(0)

4.6 OLS (with HAC inference) or GLS?
vt =B+ ug
E(ug | @¢) =0 = B (ugzy) =0

ut = pug_1 + € where g4 iid (O, 02)
Yt =yt — pyr—1 and Ty = xp — pry_q
et = ug — pug_q
For GLS where we regress §; on @4, we need E (¢;7) =
0:
2 [(v0 = pvacs) (ot = peec)]
= F (uiz) + p°F (ut—lzt—l)

—pE (ugwe_1) — pE (wg_1z) =0

Thus the following four must hold. The first two are
implied by E(uy | ) = 0. The others need stronger
assumptions.
E(ugey) =05 E (ut—l"”t—l) =0
B (upmy_1) =03 B (uy_yoq) =0

Exogenous predetermined:
E (ut | &g, Tp_qs- - ) = 0. Strictly exogenous:
E(ut | ~-<$t+lvxtv$t—1>-~-) = 0. This is needed

for GL
5 The Functional Central Limit

5.1 Wiener Process

W (s) defined on s € [0, 1].

‘We have W (0) = 0.

W (t;) = W (t5_1) ~N(0,2; — t;_1) are all iid.
Thus: W (1) ~ N(0,1). And realizations of W (s) are
continuous with probability 1.

Suppose e A4 N(0,1), and £ (t/T) =

Jr T
is linear interpolation between the points.

5.1.1 Theorem 1 (Weak Convergence
s on C[0, 1])

Function cannot go too crazy as T grows and at the
origin.

5.1.2 Theorem 2 (CMT)

of random func-
tion

C[0,1] = R and €7 (.) = £(.)
g (&) = 9(&)

Theorem 3 (Functional CLT
Suppose &4 is a MDS with o2 and bounded 2 + §
moments.

Then any function £7.(s) that linearly inter-
t
1
—= g;(t/T
VT igl i(t/T)

converges in distribution to a Wiener process:

5.1.3

polates between the points £(t/T) =

Ep = oW

. i
VT = —as oy

3/2

T3/2 /2

= o¢ /01 Er(s)ds = oe /01 W(s)ds = v

5.2 Application: Testing for a break

Null and alternative: Hg : § =0 vs. Hqg : 8§ #0

ye = By + ¢, where g4 ~ iid (0, gg)

By = B fort < 7
t= B+Sfort>rT
5.2.1  Chow Test (known break)
§=Yy -V
1 X 1 T

Vi=— > yrand¥p=—— 3

S
&)
z
—
&
q
(LN V)
—~
4=
+
|
| -
3
S———
SN—

Ew =

52 (l
>
Quandt Test (unknown break)

Compute Chow statistic for many possible values of T
and use largest.

5.

5.3 Application: Unit root AR(1) model
é = 1. Note that the following distribution is only
negative, when the numerator is: P(¢ < 0) =~ 65%
1 2
P YL 2 2 [x1 -1
SvZ_, JEw()2ds

_ Jg W(£)dW (s)

1
[\/01 W(s)2ds] 2
6 VARs and Related Topics
6.1 Basic Concepts and Notation
6.1.1 VAR and MA representation

A(L)Yy = ny
A(L)=1— AjL — ... — ApLP
Where 7y is a MDS with $,,. Yy is covariance station-
ary. Invert A(L) for MA process:
Yy = C(L)ng =ng + C1mg—1 + Cong_o + ...
=Y, —E(vy | vt?
forecast errors (or Wold shocks).

6.1.2 SVAR and SMA representation
e¢ is mds vector of STRUCTURAL shocks.

are the one-period-ahead

Then:

ne = Hey ; Var (e4) = S¢

B(L)Y; = H Y A(L)Yy = ¢; (SVAR)
Yy = C(L)Hey = D(L)ey (SMA)
6.1.3 Objects of interest
Impulse ResponsesWrite
Y720 Dret—k

the SMA as Yy =

oY+ OV 4qh D
——— = —"""—""=Dj;n

9j,t—h 9¢j,t

SIRF;j ), =

Forecast Error Var DecompSuppose the structural
shocks are mutually uncorrelated. Then

Var (Yie4n — B (Yieqen | Y2)) = Z Z DY o2 o

and the fraction that is explained by the Jth shock is

Ek 0 1] ke €5
FEVD;jp = sn_sh=lp 52
j=12k=0 zjk &;
6.2 Invertibility

If ng > ny we cannot recover H for structural shocks.
Also: Can I determine &4 from current and lagged Y.
6.3 Identification of H

We can estimate Xy from data and Xy = HE¢ H'. We
have n(n + 1)/2 elements in X5 and in 3¢, and n? in

H. Thus, we have n? too many unknowns.
6.3.1 Restrictions

1. Uncorrelated structural shocks:
Still n(n + 1)/2 too many.

make 3¢ diagonal.

2.1 Scale normalization: drop e¢ unit: ny = Heg.
2.2 Scale normalization: Set Var(ey) = I or Hy; = 1
for i = 1,...,n. Still n(n — 1)/2 restrictions short.

3. other restrictions, e.g.: timing restriction. Set up-
per triangle of H to zero. l.e. eo does not affect Yy,
and e3 not Y7, Yy etc.

6.4 Local Projections

Use companion form of the VAR:

(AR)

Zy=®Z4_1 + et

Zy=er + ®ey_1 + BPep_g ... (MA)

k

Zitk =2 2t T viqp
Let J = [In 0 0], then Yy = JZ; and ey = J ny.
Thus

(Forecast)

Yy =np + IBT g + TSI g+

cp =gk’

p—1
Yigr =CpYe+ 30 WiV +upyy
i=1
Uy 4} has mean zero conditional on (Y, ..., Yg_ pi1)-
Thus this is a regression and Cj, are the coefficients
on Yy from Yy onto (Y, ..., Yi_py1)
‘While the LP estimator is inefficient relative to es-
timators of IRS from a VAR, the LP estimators are
simple to construct, and potentially more robust to
miss-specification than the VAR-plugin estimators.
6.5 Examples of Identification Schemes
6.5.1 IV

Split H: Hy is first column, and H* the rest.

instrument

Yy =Hie1t+ », CpHyies_j + H e}
+ 30 CRpH el
k=1
Y,
Ttk —CLHy
Oeq ¢
Use instrument z; that is only correlated with ey 4:

*_x
ny = Hey = Hyeq 4 + H e}

E(ntz¢) = Spz = HE (e42¢) = H1E (1 ¢2¢)
1

This recovers Hi up to a scale factor. Set Hy; = 1
and done.
E(nj 12t
Hj1 = 7< IELD) (1)
s
E (m,lzt)
6.5.2 iid shocks
If the

Let €.t be iid over t and independent over j.
distribution is not Gaussian, identification is possible.
Look for H ! that generates iid variables in ;.




7 Discrete Choice Models

7.1 Linear Probability Model
2
Vieg lz;] =P(y; =1 2;) = P(y; = 1| a5)
7.2 Nonlinear Approaches
’
Py =112;)=F(}8)
F(n) = ®(n) (Probit)
exp(n) .
F(p) = — 2 (Logit)
1+ exp(n)

MLE
£=T[F («;8)"
i

L= y;mF (258)+(1-y;)ln

O
(1 (e1s)

7.3 Marginal Effects
OP (y; = 1| a;
oP (vi =1 1wi) _ 3 (zgﬁ) Be (Probit)
222y
A
OP (y; =1 | =, exp (28
(vi =112 (=19) 5r (Loxiv

P (i ow (a12))

8 Non-Linear Least Squares

y; = f (x5, 8) +e; with
= 2
Sn(®) = 3 (vi = f (24,))
i=1
Asymptotic Distribution

Ele; |zl =0

8.1

V(B - p) % N (0, a7 BATY)

o) (0]
B=FE [sf (Lf (5.5 B ARA

) ()]
=) <8f (miv[j)) (8f (wi,m)']
; T

BB [} o

9 Quantile Regression

y; =aiB+e; with P(e; <0|z;)=a
_ —(1 — a)n ifn <O
Pa(ﬂ)*{ an ity >0
Py 1 ’
B = arg min — Z Po (?17' — zib)
bonis) )

n
= arg mbin izl Pa (yi — ‘E;b)

VB —8) -5 N (0,a(1 —e)yr~tyrTt)

V =E[w2}] s T = B [f,),(0);]]

9.1 Quantile IV

v =25 + uy,

B[ -y <ais} —a1{y; > g} | 2] =0

B[(1 -1 {y <oi8}—a1{y; 2 2i8})o(z)] =9
This is GMM with discontinuous objective function.

Note, that if we knew B, one could try to find v as the
quantile regression estimator:

P(u; <0 2;) =

’ ’
vi — @B ==y +u;, P(u; <0|z)=a

B = arg min 5(0) W5 (b)

10 Extremum Estimators
0 = arg g‘eaé Qn(0) = arg éneaéc) n_lQn(G)
n
Qn(0) = 37 a(2:,0) 5 QO) = E [a(z,0)]
i=1
n
0=QL® =>4 (ziﬁ) (FOQ)

Using a Taylor approximation (where 6 lies between
0o and ), one can show that:

v (Bnie - 00) % N (0,471

A=E [q”
q(z;,
9 log
@' (2:,0) =
2
lo
" (2. 0) =

If correctly specified:

10.0.2

82 log (f (z,;ye))

20006/

v (8mLE — %)

Clustering

n
Qn (6) Z

e

v [q/ (24, 90

(2i+00)]

0) =log (f (2,0))

s (f (24, 9)
a6

g (f (21, 6))

2000’

. {Blog(f(zi,e))]

a6

4N (o, I*l)

2zt 0)

n T;
0=Q® = ‘Z Z " (2i¢,9)
|

Vi (8- 60) % N (0, aBA)

A=E|> 4"
t=1
T;
B=V
t=1

—1
(zit» 90)

> a’ (244 90)

11

0=E

11.0.1

if

11.0.2

= arg min
0

[ (21 00)]

Asymptoti

v (8- 60) % N

L on
— > f(zin0
n

Generalized MoM (GMM)

(0, %)

s =a"1'B'wyswyBa~l

. E[
o0
o6
=V [f (24 00)]
wo=s"1

=

af (zi,GO)]'WOE {Bf (21’90)}

el

of (2, 90)]

efficient GMM

v (8- 6g) 4 N (0, (c’sflc)_l)

o

MoM (just identif

Vi (8- 6) d, N (0,47

of (245 50)]
26
ied)

1S(A/)_1)

260

P [f’f (Ziveo)]

12 Sequential Estimators
1 . n . .
0=>3 a(e;.01) 0= r(z;,01,02)
i=1 i=1
q(z;,01)
sleno) = (85050 ) e
99 (910, 920)
Q1 =
ae’
9r (010, 920) r (610, 020)
Ry = B
26} o6}
0, _( %
ﬁ(( 02 ) ( 02 ))

Vi1QTY  mess

—1
4N (0, < @1 >>
mess
v (6 = 03) 4N (0.R; "VaoRy ') if Ry =0
183 Treatment Effects and Selection Models
13.1 Treatment Heterogeneity
If effect only varies with observable covariates,

mess

let

g1 = g9 = €. If the effect is even common, addition-
ally use X'Bg = a + X'B;.
Yy = X'Bg + <0
Yy =X'B1 +e1
Y = X'Bg + D (X' (81— Bo) +e1 —<0) + <0
TE =Y — Yy =X (81— B0)+e1— 20

Unobservable. Focus on average instead.

13.2 Parameters of Interest
E[TE] or E[TE | X] (ATE)
E[TE|D=1]or E[TE | D =1, X] (ATET)
13.2.1 3ounds

Assume Yy, for k € {0,1} is bounded, so y¢ < v}, <
y%. Then y¢ < B[y, | D =0] < y¥
find E [TE] = E[Y] — Yy] by using

Then we can

Pr(D =K)E Yy, | D =k] + (1 — Pr(D = k))y*
<E [Yg]
<Pr(D =k)E [Yg | D=k + (1 —Pr(D=k)y"

13 Matching
Assume that conditional on X, (Y7, Yy) is independent
of D, and that there are actually observations to match

across treatment groups 1 > Pr(D =1 | X) > 0.
ATE
E[Y1 — Yol =E[E[Y] — Yo | X]] (ATE)
=B[E[Y; | X,D =1]
—E[Yo | X,D = 0]
ATET

e construct average for each X, and D

e difference each average across Ds

e Average the differences.

in D 1

13.2.3 Propensity Score Matching
If (Yy,Yp) is independent of D conditional on X,
then (Y7,Y(y) is independent of D conditional on
P(X) =Pr(D = 1| X). Thus, if it is valid to match
on X, then one can alternatively match on P(X). Very
difficult to justify from an economic perspective.
13.2.4 Differences-in-Differences Estimator

Eihff-:n—dlff

Weight by appearance

_ (({,treat,after _ Y,treat,before )

_ ({,control,after _ Y,control,before ))

13.3 Randomized Experiments with Imperfect
Compliance

Let Z be 1 if assigned to treatment, and 0 if assigned
to control. Also let Dj be the treatment status if
Z =1, and D the treatment status if Z = 0. Also,
Dq, Dg are binary. Must assume

e Independence: (Yg,Yy, Do, Djp) is indepen-
dent of Z (random assignment)

e First Stage: 0 < P(Z = 1) <
P(Dy =1) # P(Dg =1)

e Monotonicity: Dy > Dg — (no defiers)

1 and

Then we have for the
LATE):

compliers (Local average TE =

aLATE = E[Y1 — Yo | D1 > Dg]
E[Y | Z=1] - E[Y | Z

ED|Z=1]—-E[D| 2
Effectively, Z acts as an instrument

= 0]

—0] cov(D,Z)
for the treatment,

cov(Y, Z)

and one can run 2SLS of Y on a constant and D, using
Z as instrument (one may include other controls X).
13.3.1 Parameter Heterogeneity
Every individual has own paremeter.
’
yi = @B +e; Bleje] =0
3P

B —— E[B]
Assume B1; and §7; are distributed independently of
(uirvi,2;). And E[u; | 2;] =0, E [v; | ;] =0, and
E[814] #0:

p25LS P, < (vi>25) _ E[51481i]
cov (2;2;) B [514]

2SLS estimates the causal effect for individuals
whom Z;

for
is most influential (those with large 515 ).
13.4 Regression Discontinuity

0 fora <
P(D=1|X =uz) =
( ! ) {1 for = > ¢
for z < ¢
forz > ¢

E[Yy | X = ]

E[Y‘X:’”:{Emm:z]

lim BE[Y | X =a] — lim E[Y | X = 1]
z e = e

=E[Y; - Yg | X =]
14 Nonparametrics

14.1 Kernel Density Estimator
~ n
Floy = —
nhn =1
-~ 1
BIF@] = $@) + 021" @) [ V2K @dv+ 0 (n)
= ! 2 -1
VIF@)] = — (@) [ k@20 +0 (n7")
nh
14.1.1 Epanechnikov kernel
3 1
2 2
= (1—- - <
Kopt (t) i (1 -t )1(t 75)
15 Machine Learning
15.1 Trees

Highly intuitive, easy to explain, highly flexible BUT
hard to interpret, discrete step function (even for con-
tinuous data), and might need a lot of leaves.
Uses regression sample split algorithm:
Yi = m11{Xg; <ot +p2t{Xg; >} +e;

Ele; | X;] =0

o The parameters are d, v, p1, and po

o d and v are estimated by grid search

o The estimates produce a sample split

e need N, for stopping criteria
15.2 Bagging (Bootstrap Aggregating)
You generate a large number B of bootstrap samples.
Estimate your regression model on each bootstrap sam-
ple. The average of the bootstrap estimates is the
bagging estimator.
15.3 Random Forests
Random forests are a modification of bagged regres-
sion trees. The modification is to reduce estimation
variance.
1. Draw a nonparametric bootstrap sample.
2. Grow a regression tree on the bootstrap sample us-
ing m variables chose at random from the p regressors

B
— —1 —
Tpp(2) = BT 37 mp ()
b=1
15.4 Elastic Net (Ridge / Lasso)

k
y; = Z ziij + £; (many regressors)
j=1
For Lasso, set a = 0. For Ridge, set o = 1. Get the
parameters via m-fold cross validation.

mm E

bj =1

2
( E zijBj

k k
2
Fala—a) 3 [p+a > b3
j=1 j=1
15.5 Double Selection Lasso (IV)
Use Lasso to estimate

D; = afy +v;
Let 1 be the M,luctcd Vdrldbl(,b
Use Lasso to estimate

Y; = 56+ v;
Let xo be the selected variables.

Let & = ®7 U 2o and regress (OLS)

~/
yi =D;0+T;8+¢;
to get the estimator of 6.

16 Notes
16.1 Binomial 16.2 Poisson
™\ k —k
p) = (M)oFa - mn Ake=A
k p(k) = ————
k!
E[X] = np
E[X] = X
Var(X) = np(l — p) (X1
. Var(X) =X
M(t) = (1—p+pe)” p
Note: if n = 1, it’s a M(t) = e D)
Bernoulli distribution.
16.3  Uniform 16.4 Univariate Normal
1
fla) = —— 1 -1 (a—p
b—a flz) = ——e 2a§( )
N oV2m
E[X]ZE(aer) E[X] =
1 sVar(Xx) = o2
Var(X) = —(b—a)
12
bt _ cat M(t) =
M(t) = ———
(b —a)t

2

x2 Distribution

n
v
=1

t Distribution
z

- VU/n

T~ ty

U~ x2
Xn E[T] =0,Vn > 2
E[U] =n,Vn > 1
Var(T) = ,Vn >3
Var(U) = 2n,¥n > 1 n—2
F Distribution
/m
T V/n
W ~ Fmon
E[W] = vn >3
n—2
2
2n2(m +n — 2)
VarW)= ——— Vn > 5
m(n —2)2(n — 4)
Marginal Distribution
DRV CRV
oo
pa(e;) = 2P, yj) fe(x) = [ f(z,y)dy
— 00
Conditional Distribution
cry
PO wl¥ = 3y = P s ny(@w;) ‘ Fxpy el = LGz

Theorems

A Linear functions of X are normally distributed
Y =n+ BX ~ Nj (77 + E;L,BZ‘E')
B | X has density given by

1 rn-1
z) = exp{—1(@ - w5 1@ - u

Ix ) = G p{-3@-w (@ —m}
T | Tndependent normally distributed RVs are jointly normal
X = (X{.X5) ~ Npig(u, D)

=(m wa w=( 00
" ( 5 ) 0 B
D Conditional normal distribution
. N o sesls
(X11X3 = @) ~ N (i1 + 12255 (22 = 12), B11 — B12%55 ¥a1)

T | Suppose X3 ~ N iz, ¥33) and X1]X5 = 53 ~ N (A T Bap, )
Then X = (X}, X3) has a multivariate normal distribution

( X, )Nh« A+ Bug ) ( BB’ + 0 BSz ))
X2 2 ' 222[1 Yoo
F Sums of independent normals
X1+ Xo ~ N(uy +pp, %1 +39)
Let X ~ Np(u,X). Also let X = (X1, xé)’, r—
Y 11 12
(ny,p5)', and & = ( .
1r2le To1  Zo2
G | The marginal distribution of X; is Ny (p1,511)
H For a normal, a zero correlation implies independence.
I Characterizing independence of linear combinations of

normal variables.
If X ~ Np(p,¥), Bis ap X k matrix, and
C is a p X m matrix, then B/X and C’X
are independent iff B’SC = 0.
Note that B’ X and C’/X are jointly normal and
B’SC is the covariance.
Quadratics: Assume A is symmetric, then Y/AY is a
quadratic form.
J f X ~ Np(p., ) where £ has rank p,
then (X — p)/ S~ 1(X — p) ~ xf,
K Let M denote an idempotent p X p matrix with rank k,
then Z'MZ ~ Xi
M = PAP’, where A contains the eigenvalues of M
on the diagonal,
and the rows of P are the orthonormal eigenvectors.
I, o P
g = k
Then M = [P Py] [ 4 o } P;
Thus, P{Z ~ N(0, P{Py), where P{Py = Iy,
L Let X = PZ, and Q = Z' AZ, where PA = 0,
then X and Q are independent
M Let Qq :Z’AIZA and Qg = Z'AgZ, where A1 Ay = 0.
Then O+1 and O~ are independent

— ’
],plpl
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